Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Unexplored aspects of unipolar ionizer characteristics in context of indoor air cleaning

  • 100 Accesses

Abstract

Indoor air pollution affects human health via acute and chronic exposure. Traditionally, filter systems have been used for indoor air cleaning; however, issues like filter life and routine maintenance remain associated with their operation. Ionizers are emerging as a potential candidate for indoor air cleaning. A major part of previous studies intended to “project ionizers as air cleaners” focus on particle removal in different conditions. But indices representing charge effects have not been given due attention. This study focuses on the measurement of spatial profile of ion concentration and aerosol current around a single ionizer and a circular array of five ionizers. The distribution of ion concentration around the system/array was found to be isotropic in the absence of ventilation. Aerosol current values under ionizer action have been measured for the first time. Results obtained from this work could be instrumental for the design of future ionizer systems with improved efficacy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alonso M, Martin MI, Alguacil FJ (2006) The measurement of charging efficiencies and losses of aerosol nanoparticles in a corona charger. J Electrost 64:203–214

  2. Arif S, Branken DJ, Everson RC, Neomagus HWJP, Grange LAL, Arif A (2016) CFD modelling of particle charging and collection in electrostatic precipitators. J Electrost 84:10–22

  3. Biskos K, Reavell E, Collings N (2004) Monte Carlo simulation of unipolar diffusion charging for spherical and non-spherical particles. J Aerosol Sci 36:707–730

  4. Biskos G, Reavell K, Collings N (2005) Unipolar diffusion charging of aerosol particles in the transition regime. J Aerosol Sci 36:247–265

  5. Brock JR (1969) Aerosol charging: the role of image force. J Appl Phys 41:843–844

  6. Brock JR (1970) Unipolar diffusion charging of aerosols and the image force. J Colloid Interface Sci 33:473–474

  7. Carlsen L, Bruggemann R, Kenessov B (2018) Use of partial order in environmental pollution studies demonstrated by urban BTEX air pollution in 20 major cities worldwide. Sci Total Environ 610-611:234–243

  8. Chakraborty A, Mandariya AK, Chakraborti R, Gupta T, Tripathi SN (2018) Realtime chemical characterization of post monsoon organic aerosols in a polluted urban city: sources, composition, and comparison with other seasons. Environ Pollut 232:310–321

  9. Daniels SL (2002) On the ionization of air for removal of noxious effluvia (air ionization of indoor environments for control of volatile and particulate contaminants with non thermal plasmas generated by dielectric-barrier discharge). IEEE Trans Plasma Sci 30(4):1471–1481

  10. Davidson SW, Gentry JW (1985) Differences in diffusion charging of dielectric and conducting ultrafine aerosols. Aerosol Sci Technol 4:157–163

  11. Delory GT, Farrell WM, Atreya SK, Renno NO, Wong AS, Cummer SA, Sentman DD, Marshall JR, Rafkin SCR, Catling DC (2006) Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology. 6(3):451–462

  12. Farrell WM, Delory GT et al (2006) The harsh electro-chemical environment in martian dust storms. Seventh International conference on Mars, California, U.S.A.

  13. Fatokun FOJ, Morawska L, Jamriska M, Jayaratne ER (2008) Application of aerosol electrometer for ambient particle charge measurements. Atmos Environ 42:8827–8830

  14. Fuchs NA (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofisica Pura e Applicata 56:185–193

  15. Gentry JW, Brock JR (1967) Unipolar diffusion charging of small aerosol particles. J Chem Phys 47:64–69

  16. Grinshpun SA, Mainelis G, Trunov M, Adhikari A, Reponen T, Willeke K (2005) Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces. Indoor Air 15:235–245

  17. Grinshpun SA, Adhikari A, Honda T, Kim KY, Toivola M, Rao KKR, Reponen T (2007) Control of contaminants in indoor air: combining the particle concentration reduction with microbial inactivation. Environ Sci Technol 41:606–612

  18. Han B, Hudda N, Ning Z, Kim YJ, Sioutas C (2009) Efficient collection of atmospheric aerosols with a particle concentrator-electrostatic precipitator sampler. Aerosol Sci Technol 43:757–766

  19. Hanley J, Ensor D, Smith D, Sparks L (1994) Fractional aerosol filtration efficiency of in-duct ventilation air cleaners. Indoor Air 4:169–178

  20. Hernandez-Sierra A, Alguacil FJ, Alonso M (2003) Unipolar charging of nanometer aerosol particles in a corona ionizer. J Aerosol Sci 34(6):733–745

  21. Hinds WC (1999) Aerosol Technology: properties, behaviour, and measurement of airborne particles, 2nd edn. New York

  22. Hoppel WA, Frick GM (1986) Ion-aerosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. Aerosol Sci Technol 5:1–21

  23. Intra P, Tippayawong N (2006) Corona ionizer for unipolar diffusion charging of nanometer aerosol particles. 29th Electrical engineering conference, Pattaya, Thailand, 9–10 November, 2006

  24. Jamriska M, Morawska L, Ensor DS (2003) Control strategies for sub micrometer particles indoors: model study of air filtration and ventilation. Indoor Air 13:96–105

  25. Joshi M, Sapra BK, Khan A, Kothalkar PS, Mayya YS (2010) Thoron (Rn-220) decay products removal in poorly ventilated environments using unipolar ionizers: dosimetric implications. Sci Total Environ 408(23):5701–5706

  26. Joshi M, Sapra BK, Kothalkar P, Khan A, Modi R, Mayya YS (2011) Implications of polarity of unipolar ionisers on reduction of effective dose attributable to thoron progeny. Radiat Prot Dosim 145(2–3):256–259

  27. Joshi M, Khan A, Anand S, Sapra BK (2016) Size evolution of ultrafine particles: differential signatures of normal and episodic events. Environ Pollut 208:354–360

  28. Kirsch AA, Zagnit’ko AV (1981) Diffusion charging of submicrometer aerosol particles by unipolar ions. J Colloid Interface Sci 80:111–117

  29. Lee BU, Yermakov M, Grinshpun SA (2004) Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission. Atmos Environ 38:4815–4823

  30. Li L, Chen DR, Tsai PJ (2009) Evaluation of an electrical aerosol detector (EAD) for the aerosol integral parameter measurement. J Electrost 67:765–773

  31. Liu BYH, Bademosi F (1971) A universal law for transfer processes in Knudsen aerosols (unpublished doctoral dissertation). Particle Technology Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN

  32. Liu BYH, Pui DYH (1977) On unipolar diffusion charging of aerosols in the continuum regime. J Colloid Interface Sci 58:142–149

  33. Marquard A, Kasper M, Meyer J, Kasper G (2005) Nanoparticle charging efficiencies and related charging conditions in a wire-tube ESP at DC energization. J Electrost 63:693–698

  34. Mayya YS, Sapra B, Khan A, Sunny F (2004) Aerosol removal by unipolar ionization in indoor environments. J Aerosol Sci 35:923–941

  35. Medved A, Dorman F, Kaufman SL, Pocher A (2000) A new corona-based charger for aerosol particles. J Aerosol Sci 31:616–617

  36. Miri M, Derakhshan Z, Allahabadi A, Ahmadi E, Conti GO, Ferrante M, Aval HE (2016) Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach. Environ Res 151:451–457

  37. Mølgaard B, Koivisto AJ, Hussein T, Hämeri K (2014) A new clean air delivery rate test applied to five portable indoor air cleaners. Aerosol Sci Technol 48(4):409–417. https://doi.org/10.1080/02786826.2014.883063

  38. Natanson GL (1960) On the theory of the charging of a microscopic aerosol particles as a result of capture of gas ions. Zh Tekh Fiz 30:573–588 (Sov Phys Tech Phys, Engl Transl 5:538–551)

  39. Owen MK, Ensor DS, Sparks LE (1992) Airborne particle sizes and sources found in indoor air. Atmos Environ 26A(12):2149–2162

  40. Park D, An M, Hwang J (2007) Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. J Aerosol Sci 38(4):420–430

  41. Patange OS, Ramanathan N, Rehman IH, Tripathi SN, Misra A, Kar A, Graham E, Singh L, Bahadur R, Ramanathan V (2015) Reductions in indoor black carbon concentrations from improved biomass stoves in rural India. Environ Sci Technol 49:4749–4756. https://doi.org/10.1021/es506208x

  42. Porteiro J, Martin R, Granada E, Patino D (2016) Three dimensional model of electrostatic precipitators for the estimation of their particle collection efficiency. Fuel Process Technol 143:86–99

  43. Ram K, Sarin MM, Tripathi SN (2012) Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. Environ Sci Technol 46:686–695. https://doi.org/10.1021/es202857w

  44. Richardson G, Harwood DJ, Eick SA, Dobbs F, Ros’en KG (2001) Reduction of fine airborne particulates (PM3) in a small city centre office, by altering electrostatic forces. Sci Total Environ 269:145–155

  45. Romay JF, Pui DYH (1992) On the combination coefficient of positive ions with ultrafine neutral particles in the transition and free molecule regimes. Aerosol Sci Technol 17(2):134–147

  46. Romieu I, Gouveia N, Cifuentes LA, de Leon AP, Junger W, Vera J, Strappa V, Hurtado-Díaz M, Miranda-Soberanis V, Rojas-Bracho L, Carbajal-Arroyo L, Tzintzun-Cervantes G (2012) HEI Health Review Committee. Multicity study of air pollution and mortality in Latin America (the ESCALA study). Res Rep Health Eff Inst 171:5–86

  47. Samek L (2016) Overall human mortality and morbidity due to exposure to air pollution. Int J Occup Med Environ Health 29(3):417–426. https://doi.org/10.13075/ijomeh.1896.00560

  48. Sapra BK, Kothalkar PS, Joshi M, Khan A, Mayya YS (2013) Mitigating particulates emitted by mosquito coils using unipolar ionizers: implications to deposition in human respiratory tract system. Indoor Built Environ 22(2):347–359

  49. Shi B, Ekberg L (2015) Ionizer assisted air filtration for collection of submicron and ultrafine particles-evaluation of long-term performance and influencing factors. Environ Sci Technol 49:6891–6898. https://doi.org/10.1021/acs.est.5b00974

  50. Shiue A, Hu SC (2011) Contaminant particles removal by negative air ionic cleaner in industrial mini environment for IC manufacturing processes. Build Environ 46:1537–1544

  51. Sow M, Lemaitre P (2015) The effect of electrostatic charges on the removal of radioactive aerosols in the atmosphere. J Phys Conf Ser 646:012011. https://doi.org/10.1088/1742-6596/646/1/012011

  52. Tian CY, Xiang X, Juan J, Sun K, Song Y, Cao Y, Hu Y (2017) Fine particulate air pollution and hospital visits for asthma in Beijing. Environ Pollut 230:227–233

  53. Traynor GW, Apte MG, Carruthers AR, Dlllworth JF, Grlmsrud DT, Gundel LA (1987) Indoor air pollution due to emissions from wood-burning stoves. Environ Sci Technol 21(7):691–697

  54. Venkatraman C, Sagar AD, Habib G, Lam N, Smith KR (2010) The Indian national initiative for advanced biomass cookstoves: the benefits of clean combustion. Energy Sustain Dev 14(2):63–72

  55. Whitby KT (1961) Generator for producing high concentration of small ions. Rev Sci Instrum 32(12):1351–1355

  56. White HJ (1951) Particle charging in electrostatic precipitation. AIEEE Trans 70:1186–1191

  57. Wong CM, Vichit-Vadakan N, Vajanapoom N, Ostro B, Thach TQ, Chau PY, Chan EK, Chung RY, Ou CQ, Yang L, Peiris JS, Thomas GN, Lam TH, Wong TW, Hedley AJ, Kan H, Chen B, Zhao N, London SJ, Song G, Chen G, Zhang Y, Jiang L, Qian Z, He Q, Lin HM, Kong L, Zhou D, Liang S, Zhu Z, Liao D, Liu W, Bentley CM, Dan J, Wang B, Yang N, Xu S, Gong J, Wei H, Sun H, Qin Z (2010) HEI Health Review Committee. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality. Res Rep Health Eff Inst 154:377–418

Download references

Author information

Correspondence to Balvinder Kaur Sapra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khandare, P., Joshi, M., Nakhwa, A. et al. Unexplored aspects of unipolar ionizer characteristics in context of indoor air cleaning. Environ Sci Pollut Res 26, 18191–18199 (2019). https://doi.org/10.1007/s11356-019-05118-w

Download citation

Keywords

  • Aerosol current
  • Air cleaning
  • Charge
  • Ionizer