Environmental Science and Pollution Research

, Volume 26, Issue 16, pp 16716–16726 | Cite as

Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity

  • Tianmeng Zhang
  • Yang ZhangEmail author
  • Hua Jiang
  • Xiaoyu Wang
Research Article


In this study, the cellulose nanocrystals (CNC) obtained by acid hydrolysis of microcrystalline cellulose (MCC) are customized by suspension to obtain a spherical CNC hydrogel. The N-(2-aminoethyl) (3-amino-propyl) methyldimethoxyansile (AEAPMDS) preparation was grafted to spherical CNC hydrogel using a water phase heat treatment. Finally, aerogel samples were obtained by tert-butanol replacement and freeze-drying. The test results confirmed that the aminosilane was grafted on CNC. Electron micrographs and N2 sorption isotherms showed that the pores of the aerogel were partially blocked due to the introduction of AEAPMDS, and the specific surface area was decreased. Due to the presence of chemisorption, the amount of CO2 adsorbed at a pressure of 3 bar by the modified aerogel (2.63 mmol/g) was greatly improved compared with the unmodified aerogel (0.26 mmol/g), and the adsorption results were fit well by the Langmuir model. Thus, our experiments provided the opportunity to develop a new CO2 absorbent material.


Cellulose nanocrystal Aerogel Graft CO2 adsorption 


Funding information

This work was financially supported by the Special Fund for Forest Scientific Research in the Public Welfare (201504603).

Supplementary material

11356_2019_5068_MOESM1_ESM.docx (813 kb)
ESM 1 (DOCX 812 kb)


  1. Abdelmouleha M, Boufia S, Belgacemb MN, Duartec AP, Salaha AB, Gandinib A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54CrossRefGoogle Scholar
  2. Bhanja P, Chatterjee S, Bhaumik A (2016) Triazine-based porous organic polymer with good CO2 gas adsorption properties and an efficient organocatalyst for the one-pot multicomponent condensation. Chemcatchem 8:3089–3098. CrossRefGoogle Scholar
  3. Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRefGoogle Scholar
  4. Chen W, Yu H, Li Q, Liu Y, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7:10360–10368CrossRefGoogle Scholar
  5. Darunte LA, Walton KS, Sholl DS, Jones CW (2016) CO2 capture via adsorption in amine-functionalized sorbents. Curr Opin Chem Eng 12:82–90. CrossRefGoogle Scholar
  6. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631. CrossRefGoogle Scholar
  7. Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym 147:89–96CrossRefGoogle Scholar
  8. Gao Z, Ma M, Zhai X, Zhang M, Zang D, Wang C (2015) Improvement of chemical stability and durability of superhydrophobic wood surface via a film of TiO2 coated CaCO3 micro-/nano-composite particles. RSC Adv 5:63978–63984CrossRefGoogle Scholar
  9. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRefGoogle Scholar
  10. García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr Polym 117:797–806CrossRefGoogle Scholar
  11. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108. CrossRefGoogle Scholar
  12. He Y-L, Xie T (2015) Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl Therm Eng 81:28–50. CrossRefGoogle Scholar
  13. Jadhav PD, Chatti RV, Biniwale RB, Labhsetwar NK, Devotta S, Rayalu SS (2007) Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuel 21:3555–3559CrossRefGoogle Scholar
  14. Jiao Y, Wan C, Qiang T, Li J (2016) Synthesis of superhydrophobic ultralight aerogels from nanofibrillated cellulose isolated from natural reed for high-performance adsorbents. Appl Phys A 122:686Google Scholar
  15. Kim J, Rubino I, Lee J-Y, Choi H-J (2016) Application of halloysite nanotubes for carbon dioxide capture. Mater Res Express 3.
  16. Kyohyun S, Nakwon L, Joonseok K, Eun-Bum C, Chamila G, Mietek J (2015) CO2 adsorption on amine-functionalized periodic mesoporous benzenesilicas. ACS Appl Mater Interfaces 7:6792–6802CrossRefGoogle Scholar
  17. Lamy-Mendes A, Silva RF, Duraes L (2018) Advances in carbon nanostructure-silica aerogel composites: a review. J Mater Chem A 6:1340–1369. CrossRefGoogle Scholar
  18. Le Y, Guo D, Cheng B, Yu J (2013) Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability. J Colloid Interface Sci 408:173–180. CrossRefGoogle Scholar
  19. Lee KY, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4:4078CrossRefGoogle Scholar
  20. Li N, Chen W, Chen G, Wan X, Tian J (2018) Low-cost, sustainable, and environmentally sound cellulose absorbent with high efficiency for collecting methane bubbles from seawater. ACS Sustain Chem Eng 6: 6370–6377Google Scholar
  21. Li D et al (2019) Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel 238:232–239. CrossRefGoogle Scholar
  22. Long L-Y, Weng Y-X, Wang Y-Z (2018) Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers (Basel) 10:623.
  23. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer (Guildf) 49:1285–1296CrossRefGoogle Scholar
  24. Mishra AK, Ramaprabhu S (2012) Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate. RSC Adv 2:1746–1750CrossRefGoogle Scholar
  25. Nie S, Zhang C, Zhang Q, Zhang K, Zhang Y, Tao P, Wang S (2018) Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. Ind Crop Prod 124:435–441. CrossRefGoogle Scholar
  26. Niu M, Yang H, Zhang X, Wang Y, Tang A (2016) Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl Mater Interfaces 8:17312–17320CrossRefGoogle Scholar
  27. Ouyang J, Gu W, Zhang Y, Yang H, Jin Y, Chen J, Jiang J (2018a) CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization. Chem Eng J 341:432–440. CrossRefGoogle Scholar
  28. Ouyang J et al (2018b) Polyethyleneimine (PEI) loaded MgO-SiO2 nanofibers from sepiolite minerals for reusable CO2 capture/release applications. Appl Clay Sci 152:267–275. CrossRefGoogle Scholar
  29. Ouyang J, Zheng C, Gu W, Zhang Y, Yang H, Suib SL (2018c) Textural properties determined CO2 capture of tetraethylenepentamine loaded SiO2 nanowires from alpha-sepiolite. Chem Eng J 337:342–350. CrossRefGoogle Scholar
  30. Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health 15.
  31. Razmkhah M, Mosavian MTH, Moosavi F, Ahmadpour A (2018) CO2 gas adsorption into graphene oxide framework: effect of electric and magnetic field. Appl Surf Sci 456:318–327. CrossRefGoogle Scholar
  32. Sharma P, Baek I-H, Park Y-W, Sung-Chan N, Park J-H, Park S-D, Park SY (2012) Adsorptive separation of carbon dioxide by polyethyleneimine modified adsorbents. Korean J Chem Eng 29:249–262. CrossRefGoogle Scholar
  33. Shen X, Du H, Mullins RH, Kommalapati RR (2017) Polyethylenimine applications in carbon dioxide capture and separation: from theoretical study to experimental work. Energ Technol 5:822–833. CrossRefGoogle Scholar
  34. Shi J, Lu L, Guo W, Zhang J, Cao Y (2013) Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels. Carbohydr Polym 98:282–289CrossRefGoogle Scholar
  35. Sing KSW (1985) Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  36. Tiwari D, Bhunia H, Bajpai PK (2018) Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Appl Surf Sci 439:760–771. CrossRefGoogle Scholar
  37. Vilarrasa-Garcia E, Ortigosa-Moya EM, Cecilia JA, Cavalcante CL Jr, Jimenez-Jimenez J, Azevedo DCS, Rodriguez-Castellon E (2015) CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater 209:172–183. CrossRefGoogle Scholar
  38. Wan C, Lu Y, Jiao Y, Jin C, Sun Q, Li J (2015) Ultralight and hydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties. J Appl Polym Sci 132:42037Google Scholar
  39. Wang Z, Han NM, Wu Y, Liu X, Shen X, Zheng Q, Kim JK (2017) Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon N Y 123:385–394Google Scholar
  40. Wang X et al (2018) Synthesis and characterization of amine-modified spherical nanocellulose aerogels. J Mater Sci 53:13304–13315. CrossRefGoogle Scholar
  41. Yang Y, Li H, Chen S, Zhao Y, Li Q (2010) Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir 26:13897–13902CrossRefGoogle Scholar
  42. Yin F, Zhuang L, Luo X, Chen S (2018) Simple synthesis of nitrogen-rich polymer network and its further amination with PEI for CO2 adsorption. Appl Surf Sci 434:514–521. CrossRefGoogle Scholar
  43. Yin F, Wu Z, Luo X, Zhuang L, Ou H, Chen S (2019) Synthesis of nitrogen-rich hollow microspheres for CO2 adsorption. J Mater Sci 54:3805–3816. CrossRefGoogle Scholar
  44. Yu J, Le Y, Cheng B (2012) Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv 2:6784–6791CrossRefGoogle Scholar
  45. Zettlemoyer AC (1958) Colloid and surface Chemistry.Google Scholar
  46. Zhang F, Ren H, Tong G, Deng Y (2016) Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties. Cellulose 23:1–12CrossRefGoogle Scholar
  47. Zhang T, Zhang Y, Wang X, Liu S, Yao Y (2018) Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Mater Lett 229:103–106. CrossRefGoogle Scholar
  48. Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nystroem G (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tianmeng Zhang
    • 1
  • Yang Zhang
    • 1
    Email author
  • Hua Jiang
    • 2
  • Xiaoyu Wang
    • 1
  1. 1.College of Materials Science and EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China

Personalised recommendations