Assessment of water quality from the Blue Lagoon of El Cobre mine in Santiago de Cuba: a preliminary study for water reuse

  • Odalys Rodríguez Gámez
  • Isabelle Laffont-SchwobEmail author
  • Pascale Prudent
  • Laurent Vassalo
  • Isabel Aguilera Rodrìguez
  • Rocio Pérez Macías
  • Marie-Eléonore Petit
  • Ana Teresa Acebal Ibarra
  • Véronique Masotti
  • Isabelle Perraud-Gaime
  • Arelis Abalos Rodríguez
Research Article


The creation of pit lakes is usually an acceptable solution from the landscaping point of view for voids left by discontinued open-pit mines. However, without rehabilitation, these voids represent a potential environmental risk. The aim of the present work was to assess, for the first time, the water quality, i.e., physicochemical characteristics, metal and metalloid (MM) content, and ecotoxicity of the waters of the El Cobre Blue Lagoon, a pit lake formed in an open-pit copper mine in Cuba. Potential effects of rainy season vs. dry season and spatial location (different depths) on water characteristics were considered. Results revealed that water contained was moderately acidic (pH = 4.6 ± 0.2), with high electrical conductivity (EC = 3.02 ± 0.03 mS cm−1), whatever the season. Dissolved oxygen (DO = 9.9 ± 2.0 mg L−1), total dissolved solid (TDS = 7003 ± 245 mg L−1), and sulfate concentration (6556 ± 1410 mg L−1) in the El Cobre Blue Lagoon water were above acceptable limits for sources of surface water as recommended by Cuban standard (NC 1021:2014). High copper (43.6 ± 1.7 mg L−1) and manganese (24.1 ± 1.1 mg L−1) contents were detected. Except for EC, sulfates, chlorides, TDS, nitrates, and phosphates, other physicochemical parameters were stable between dry and rainy seasons (p < 0.05). El Cobre Blue Lagoon waters showed an ecotoxicological impact on Vibrio fischeri. No significant differences were detected between all sampling points in the lake for each parameter monitored for a given time. These first results show the spatial homogeneity but poor quality of waters from El Cobre Blue Lagoon. Remediation processes need to be implemented in order to lessen the human and environmental health risk and favor potential water reuse. We suggest the use of constructed wetlands for water treatment. This preliminary research work can serve to alert Cuban local public authorities to the need to rehabilitate such sites.


Pit lake Water quality Copper Ecotoxicology Human health Seasonal variations 



The authors thank the Agence Universitaire de la Francophonie (AUF), Bureau Caraïbes, and the French Embassy in Cuba for providing the research funding (Project “Études des potentialités de remédiation de la lagune bleue des mines de cuivre de la ville d’El Cobre”). Our thanks to the various institutions involved in the project, including the Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), the Institut de Recherche pour le Développement (IRD) and the Laboratoire de Chimie de l’Environnement (LCE) of Aix-Marseille University, France, and the company Geominera Oriente for their support and for helping us to carry out this study. Thanks to Michael Paul for English proofreading of the paper. Many thanks to Lorène Tosini for the realization of the correlogram using R package.


  1. Aguilera A (2013) Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life 3:363–374CrossRefGoogle Scholar
  2. Amos PW, Younger PL (2003) Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate. Water Res 37:108–120CrossRefGoogle Scholar
  3. APHA (2005) Standard methods for the examination of water and waste water, 21st edn. American Public Health Association, Washington, DC AWWA. WEF. 21th edition 2005, Part. 2540- C: Total Dissolved SolidsGoogle Scholar
  4. Barnett GR, Hurwitz E (1939) The use of sodium azide in the Winkler method for the determination of dissolved oxygen. Sew Work J 11(5):781–787Google Scholar
  5. Bisson, M (2012) Fiche de données toxicologiques et environnementales des substances chimiques: Manganèse et ses dérivés. DRC-11-117259-10310B, 81Google Scholar
  6. Blanchette ML, Lund MA (2016) Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Curr Opin Environ Sustain 23:28–34CrossRefGoogle Scholar
  7. Bozau E, Bechstedt T, Friese K, Frömmichen R, Herzsprung P, Koschorreck M, Meier J, Völkner C, Wendt-Potthoff K, Wieprecht M, Geller W (2007) Biotechnological remediation of an acidic pit lake: modelling the basic processes in a mesocosm experiment. J Geochem Explor 92:212–221CrossRefGoogle Scholar
  8. Cañete PC, Rosales A, Vidal PC, Wilson JC, Wilson M, Jornada AS, Cavalcanti CA (2005) Evaluacion y Diagnostico sobre la Degradación Ambiental de la Mina “El Cobre” en Santiago de Cuba. Final Report Project, 149Google Scholar
  9. Castro JM, Moore JN (2000) Pit lakes: their characteristics and the potential for their remediation. Environ Geol 39(11):1254–1260CrossRefGoogle Scholar
  10. Cazañas X, Melgarejo JC, Luna JA, Barrabí YH (1998) El depósito volcanogénico de Cu-Zn-Pb-Au El Cobre, Cuba Oriental: estructura y mineralogía. Acta Geol Hisp 33:277–333Google Scholar
  11. Cuban Tourism (2016) Accessed 21 Feb 2019
  12. Das S, Patnaik SC, Sahu HK, Chakraborty A, Sudarshan M, Thatoi HN (2013) Heavy metal contamination, physico-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India. Trans Nonferrous Metals Soc China 23:484–493CrossRefGoogle Scholar
  13. Denimal S, Bertrand C, Mudry J, Paquette Y, Hochart M, Steinmann M (2005) Evolution of the aqueous geochemistry of mine pit lakes Blanzy-Montceau-les-Mines coal basin (Massif Central, France): origin of sulfate contents; effects of stratification on water quality. Appl Geochem 20:825–839CrossRefGoogle Scholar
  14. Derham T. (2004) Biological communities and water quality in acidic mine lakes. Bachelor of Engineering thesis, University of Western Australia, Hatfield, AUGoogle Scholar
  15. Doane TA, Horwáth WR (2003) Spectrophotometric determination of nitrate with a single reagent. Anal Lett 36(12):2713–2722CrossRefGoogle Scholar
  16. Eary LE (1999) Geochemical and equilibrium trends in mine pit lakes. Appl Geochem 14:963–987CrossRefGoogle Scholar
  17. EPA (Environmental Protection Agency) (2000). Abandoned mine site characterization and cleanup handbook. EPA 910-B-00-001. 2000Google Scholar
  18. EPA (Environmental Protection Agency) (2001). Parameters of water quality. Interpretation and standards. ISBN 1-84096-015-3Google Scholar
  19. Frömmichen R, Kellner S, Friese K (2003) Sediment conditioning with organic and/or inorganic carbon sources as a first step in alkalinity generation of acid mine pit lake water (pH 2–3). Environ Sci Technol 37:1414–1421CrossRefGoogle Scholar
  20. Gammons CH, Harris LN, Castro JM, Cott PA, Hanna BW (2009) Creating lakes from open pit mines: processes and considerations—with emphasis on northern environments. Can Tech Rep Fish Aquat Sci 2826:ix + 106Google Scholar
  21. Gautam RK, Sharma AS, Mahiyab S, Chattopadhyaya MC (2015) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. Chapter 1. In: Heavy metals in water: presence, removal and safety. Edited by Sanjay K. Sharma., Royal Society of Chemistry, ISBN 978-1-84973-885-9Google Scholar
  22. Guittonny-Philippe A, Masotti V, Höhener P, Boudenne JL, Viglione J, Laffont-Schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int 64:1–16CrossRefGoogle Scholar
  23. Haygood MG, Nealson KH (1985) Mechanisms of iron regulation of luminescence in Vibrio fischeri. J Bacteriol 162(1):209–216Google Scholar
  24. Hinwood A, Heyworth J, Tanner H, Mccullough CD (2012) Recreational use of acidic pit lakes—human health considerations for post closure planning. J Water Resource Prot 4(4):1061–1070CrossRefGoogle Scholar
  25. Igbinosa EO, Uyi OO, Odjadjare EE, Ajuzie CU, Orhue PO, Adewole EM (2012) Assessment of physicochemical qualities, heavy metal concentrations and bacterial pathogens in Shanomi Creek in the Niger Delta, Nigeria. Afr J Environ Sci Technol 6(11):419–424CrossRefGoogle Scholar
  26. ISO 11348-3:2007: Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)—part 3: method using freeze-dried bacteria, 2007Google Scholar
  27. Kalin M (2004) Passive mine water treatment: the correct approach? Ecol Eng 22:299–304CrossRefGoogle Scholar
  28. Karmarkar SV and Tabatabai MA (2000) Sulfate, sulfite and sulfide, Handbook of water analysis (ed. Nollet LML), p196, ISBN-10: 0824784332Google Scholar
  29. Kerketta P, Baxla SL, Gora RH, Kumari S, Roushan RK (2013) Analysis of physico-chemical properties and heavy metals in drinking water from different sources in and around Ranchi, Jharkhand, India. Vet World 6(7):370–375CrossRefGoogle Scholar
  30. Khan Z, Linares P, García-González J (2017) Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments. Renew Sust Energ Rev 67:1123–1138CrossRefGoogle Scholar
  31. Kraemer EO, Stamm AJ (1924) Mohr’s method for the determination of silver and halogens in other than neutral solutions. J Am Chem Soc 46(12):2707–2709CrossRefGoogle Scholar
  32. Kumar RN, McCullough CD, Lund MA (2009) Water resources in Australian mine pit lakes. Min Technol 118(3/4):205–211CrossRefGoogle Scholar
  33. Kumar TJR, Dushiyanthan C, Thiruneelakandan B, Suresh R, Raja SV, Senthilkumar M (2016) Major and trace element characterization of shallow groundwater in coastal alluvium of Chidambaram town, Cuddalore district, South India. J Geosci Environ Protection 4:64–76CrossRefGoogle Scholar
  34. McCullough CD (2007) Approaches to remediation of acid mine drainage water in pit lakes. Int J Min Reclam Environ 22:105–119CrossRefGoogle Scholar
  35. Miller GE, Lyons WB, Davis A (1996) Understanding the water quality of pit lakes. Environ Sci Technol 30:118A–123ACrossRefGoogle Scholar
  36. Neil LL, McCullough CD, Lund MA, Evans LH, Tsvetnenko Y (2009) Toxicity of acid mine pit lake water remediated with limestone and phosphorus. Ecotoxicol Environ Saf 72:2046–2057CrossRefGoogle Scholar
  37. Norma Cubana 1021 (2014) Higiene comunal. Fuentes de abastecimiento de agua. Calidad y protección sanitariaGoogle Scholar
  38. Norma Cubana 22 (1999) Lugares de baño en costas y en masas de aguas interiores. Requisitos higiénico-sanitariosGoogle Scholar
  39. Norma Cubana 827 (2010) Agua potable. Requisitos sanitariosGoogle Scholar
  40. O’Neal SL, Zheng W (2015) Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep 2:315–328CrossRefGoogle Scholar
  41. Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32(2):265–268CrossRefGoogle Scholar
  42. Proft G (1964) Determination of total phosphorus in water and waste-water as molybdovanadophosphoric acid. Limnologica 2:407Google Scholar
  43. Ramteke S, Verma V, Chakradhari S, Sahu PK, Sahu BL, Rajhans KP, Yadav A, Patel KS (2016) Pit lake water quality of Central India. J Geogr Inf Syst 8:28–39Google Scholar
  44. R Development Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  45. Schultze M, Pokrandt KH, Hille W (2010) Pit lakes of the Central German lignite mining district: creation, morphometry and water quality aspects. Limnologica 40:148–155CrossRefGoogle Scholar
  46. Shevenell L, Connors KA, Henry CD (1999) Controls on pit lake water quality at sixteen open-pit mines in Nevada. Appl Geochem 14:669–687CrossRefGoogle Scholar
  47. Soni AK, Mishra B, Singh S (2014) Pit lakes as an end use of mining: a review. J Min Environ 5:99–111Google Scholar
  48. Souza AM, Salviano AM, Melo JFB, Felix WP, Belém CS, Ramos PN (2015) Seasonal study of concentration of heavy metals in waters from lower São Francisco River basin, Brazil. Braz J Biol 76:967–974CrossRefGoogle Scholar
  49. Sracek O, Choquette M, Gelinas P, Lefebvre R, Nicholson RV (2004) Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Quebec, Canada. J Contam Hydrol 69:45–71CrossRefGoogle Scholar
  50. Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117CrossRefGoogle Scholar
  51. Stuyfzand PT (1989) A new hydrochemical classification of water types with examples of application, vol 184. AHS, pp 89–98Google Scholar
  52. Tucci NJ, Gammons CH (2015) Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, U.S.A. Environ Sci Technol 49(7):4081–4088CrossRefGoogle Scholar
  53. Utgikar VP, Chaudhary N, Koeniger A, Tabak HH, Haines JR, Govin R (2004) Toxicity of metals and metal mixtures: analysis of concentration and time dependence for zinc and copper. Water Res 38:3651–3658CrossRefGoogle Scholar
  54. Watten BJ, Sibrell PL, Schwartz MF (2005) Acid neutralization within limestone sand reactors receiving coal mine drainage. Environ Pollut 137:295–304CrossRefGoogle Scholar
  55. WHO World Health Organization (2003) Sodium in drinking-water: background document for development of WHO guidelines for drinking-water qualityGoogle Scholar
  56. WHO World Health Organization (2009) Potassium in drinking-water: background document for development of WHO guidelines for drinking-water qualityGoogle Scholar
  57. Yang X, Yan J, Wang F, Xu J, Liu X, Ma K, Hu X, Ye J (2016) Comparison of organics and heavy metals acute toxicities to Vibrio fischeri. J Serb Chem Soc 81:697–705CrossRefGoogle Scholar
  58. Yucel DS, Baba A (2013) Geochemical characterization of acid mine lakes in Northwest Turkey and their effect on the environment. Arch Environ Contam Toxicol 64:357–376CrossRefGoogle Scholar
  59. Zhao LY, McCullough CD, Lund MA (2009) Pit lake resources of the Collie Basin. MiWER/Centre for Ecosystem Management Report 2009-10 Edith Cowan University, Perth, Australia. pp. 215. Unpublished report to Department of WaterGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Odalys Rodríguez Gámez
    • 1
  • Isabelle Laffont-Schwob
    • 2
    • 3
    Email author
  • Pascale Prudent
    • 4
  • Laurent Vassalo
    • 4
  • Isabel Aguilera Rodrìguez
    • 1
  • Rocio Pérez Macías
    • 1
  • Marie-Eléonore Petit
    • 2
  • Ana Teresa Acebal Ibarra
    • 5
  • Véronique Masotti
    • 2
  • Isabelle Perraud-Gaime
    • 2
  • Arelis Abalos Rodríguez
    • 1
  1. 1.Studies of Industrial Biotechnology Center, Exact and Natural Science FacultyOriente UniversitySantiago de CubaCuba
  2. 2.Avignon University, CNRS, IRD, IMBE, Aix Marseille UniversityMarseilleFrance
  3. 3.Aix Marseille University, IRD, LPEDMarseilleFrance
  4. 4.Aix marseille University, LCE, CNRSMarseilleFrance
  5. 5.Geominera Oriente EnterpriseSantiago de CubaCuba

Personalised recommendations