Environmental Science and Pollution Research

, Volume 26, Issue 16, pp 16195–16209 | Cite as

Integrated lipid production, CO2 fixation, and removal of SO2 and NO from simulated flue gas by oleaginous Chlorella pyrenoidosa

  • Kui Du
  • Xiaobin Wen
  • Zhongjie Wang
  • Fang Liang
  • Liming Luo
  • Xinan Peng
  • Yan Xu
  • Yahong Geng
  • Yeguang LiEmail author
Research Article


CO2, SO2, and NO are the main components of flue gas and can cause serious environmental issues. Utilization of these compounds in oleaginous microalgae cultivation not only could reduce air pollution but could also produce feedstock for biodiesel production. However, the continuous input of SO2 and NO inhibits microalgal growth. In this study, the toxicity of simulated flue gas (15% CO2, 0.03% SO2, and 0.03% NO, balanced with N2) was reduced through automatic pH feedback control. Integrated lipid production and CO2 fixation with the removal of SO2 and NO was achieved. Using this technique, a lipid content of 38.0% DW was achieved in Chlorella pyrenoidosa XQ-20044. The lipid composition and fatty acid profile indicated that lipid production by C. pyrenoidosa XQ-20044 cultured with flue gas is suitable as a biodiesel feedstock; 81.2% of the total lipids were neutral lipids and 99.5% of the total fatty acids were C16 and C18. The ratio of saturated fatty acids to monounsaturated fatty acids in the microalgal lipid content was 74.5%. In addition, CO2, SO2, and NO from the simulated flue gas were fixed and converted to biomass and lipids with a removal efficiency of 95.9%, 100%, and 84.2%, respectively. Furthermore, the utilization efficiencies of CO2, SO2, and NO were equal to or very close to their removal efficiencies. These results provide a novel strategy for combining biodiesel production with biofixation of flue gas.


Microalgae Biodiesel CO2 biofixation SO2 removal NO removal 



This work was funded by the National Natural Science Foundation of China (31272680) and the Ministry of Science and Technology of China (2013AA065805, 2012FY112900). This work was performed in Wuhan Botanical Garden, Chinese Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.


  1. Arbib Z, Ruiz J, Alvarez-Diaz P, Garrido-Perez C, Barragan J, Perales JA (2013) Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. Ecol Eng 57:226–235. CrossRefGoogle Scholar
  2. Aslam A, Thomas-Hall SR, Mughal TA, Schenk PM (2017) Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresour Technol 233:271–283. CrossRefGoogle Scholar
  3. Aslam A, Thomas-Hall SR, Manzoor M, Jabeen F, Iqbal M, Uz Zaman Q, Schenk PM, Asif Tahir M (2018) Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: fatty acid profiling and biodiesel production. J Photochem Photobiol B 179:126–133. CrossRefGoogle Scholar
  4. ASTM D516-11 (2011) Standard test method for sulfate ion in water. ASTM International web,
  5. Basu S, Roy AS, Mohanty K, Ghoshal AK (2013) Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol 143:369–377. CrossRefGoogle Scholar
  6. Chaudhary R, Dikshit AK, Tong YW (2018) Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environ Sci Pollut Res 25:20399–20406. CrossRefGoogle Scholar
  7. Cheng D, Li X, Yuan Y, Yang C, Tang T, Zhao Q, Sun Y (2019) Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. Sci Total Environ 650:2931–2938. CrossRefGoogle Scholar
  8. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131. CrossRefGoogle Scholar
  9. Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol 102(19):9135–9142. CrossRefGoogle Scholar
  10. Cubero RG, Fernández JM, González MG (2017) Potential of Chlorella vulgaris to abate flue gas. Waste Biomass Valor 9(11):2015–2019. CrossRefGoogle Scholar
  11. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412. CrossRefGoogle Scholar
  12. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82(1):179–185. CrossRefGoogle Scholar
  13. Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165. CrossRefGoogle Scholar
  14. Grobbelaar JU (2004) Algal nutrition-mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Ames, pp 97–115Google Scholar
  15. Han FF, Huang JK, Li YG, Wang WL, Wan MX, Shen GM, Wang J (2013) Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresour Technol 136:418–424. CrossRefGoogle Scholar
  16. Hariz HB, Takriff MS (2017) Palm oil mill effluent treatment and CO2 sequestration by using microalgae-sustainable strategies for environmental protection. Environ Sci Pollut Res 24(25):20209–20240. CrossRefGoogle Scholar
  17. Hauck JT, Olson GJ, Scierka SJ, Perry MB, Ataai MM (1996) Effects of simulated flue gas on growth of microalgae. Abstr Pap Am Chem Soc 212:1391–1396Google Scholar
  18. Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100(17):3921–3926. CrossRefGoogle Scholar
  19. Jebali A, Acien FG, Rodriguez Barradas E, Olguin EJ, Sayadi S, Molina Grima E (2018) Pilot-scale outdoor production of Scenedesmus sp. in raceways using flue gases and centrate from anaerobic digestion as the sole culture medium. Bioresour Technol 262:1–8. CrossRefGoogle Scholar
  20. Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364. CrossRefGoogle Scholar
  21. Jin Y, Veiga MC, Kennes C (2005) Bioprocesses for the removal of nitrogen oxides from polluted air. J Chem Technol Biotechnol 80(5):483–494. CrossRefGoogle Scholar
  22. Jin HF, Santiago DEO, Park J, Lee K (2008) Enhancement of nitric oxide solubility using Fe(II)EDTA and its removal by green algae Scenedesmus sp. Biotechnol Bioprocess Eng 13(1):48–52. CrossRefGoogle Scholar
  23. Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, Chang JS, Lin CS (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493. CrossRefGoogle Scholar
  24. Kim B, Praveenkumar R, Choi E, Lee K, Jeon S, Oh Y-K (2018) Prospecting for oleaginous and robust Chlorella spp. for coal-fired flue-gas-mediated biodiesel production. Energies 11(8):2026. CrossRefGoogle Scholar
  25. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380. CrossRefGoogle Scholar
  26. Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Manag 36(6–9):689–692. CrossRefGoogle Scholar
  27. Lara-Gil JA, Alvarez MM, Pacheco A (2014) Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems. J Appl Phycol 26(1):357–368. CrossRefGoogle Scholar
  28. Lee JH, Lee JS, Shin CS, Park SC, Kim SW (2000a) Effects of NO and SO2 on growth of highly-CO2-tolerant microalgae. J Microbiol Biotechnol 10(3):338–343Google Scholar
  29. Lee JN, Lee JS, Shin CS, Park SC, Kim SW (2000b) Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas. Appl Biochem Biotechnol 84-6:329–342. CrossRefGoogle Scholar
  30. Li FF, Yang ZH, Zeng R, Yang G, Chang X, Yan JB, Hou YL (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50(10):6496–6502. CrossRefGoogle Scholar
  31. Li XK, Xu JL, Guo Y, Zhou WZ, Yuan ZH (2015) Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT. Bioresour Technol 190:339–344. CrossRefGoogle Scholar
  32. Liang F, Wen X, Geng Y, Ouyang Z, Luo L, Li Y (2013) Growth rate and biomass productivity of Chlorella as affected by culture depth and cell density in an open circular photobioreactor. J Microbiol Biotechnol 23(4):539–544. CrossRefGoogle Scholar
  33. Liang F, Wen X, Luo L, Geng Y, Li Y (2014) Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain. Chin J Oceanol Limnol 32(6):1288–1296. CrossRefGoogle Scholar
  34. Liang F, Du K, Wen X, Luo L, Geng Y, Li Y (2015) The effects of physicochemical factors and cell density on nitrite transformation in a lipid-rich Chlorella. J Microbiol Biotechnol 25(12):2116–2124. CrossRefGoogle Scholar
  35. Lizzul AM, Hellier P, Purton S, Baganz F, Ladommatos N, Campos L (2014) Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour Technol 151:12–18. CrossRefGoogle Scholar
  36. Ma X, Gao M, Gao Z, Wang J, Zhang M, Ma Y, Wang Q (2018) Past, current, and future research on microalga-derived biodiesel: a critical review and bibliometric analysis. Environ Sci Pollut Res 25:10596–10610. CrossRefGoogle Scholar
  37. Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp. (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25(2):387–398. CrossRefGoogle Scholar
  38. Nagase H, Yoshihara K, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamoto K (1997) Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system. J Ferment Bioeng 83(5):461–465. CrossRefGoogle Scholar
  39. Nagase H, Eguchi K, Yoshihara K, Hirata K, Miyamoto K (1998) Improvement of microalgal NOx removal in bubble column and airlift reactors. J Ferment Bioeng 86(4):421–423. CrossRefGoogle Scholar
  40. Nagase H, Yoshihara K, Eguchi K, Okamoto Y, Murasaki S, Yamashita R, Hirata K, Miyamoto K (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem Eng J 7(3):241–246. CrossRefGoogle Scholar
  41. Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol 28/29:877–886. CrossRefGoogle Scholar
  42. Niu H, Leung DYC (2010) A review on the removal of nitrogen oxides from polluted flow by bioreactors. Environ Rev 18(NA):175–189. CrossRefGoogle Scholar
  43. Olaizola M (2003) Microalgal removal of CO2 from flue gases: changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol Bioprocess Eng 8(6):360–367. CrossRefGoogle Scholar
  44. Praveenkumar R, Kim B, Choi E, Lee K, Cho S, Hyun JS, Park JY, Lee YC, Lee H, Lee JS, Oh YK (2014) Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production. Bioprocess Biosyst Eng 37(10):2083–2094. CrossRefGoogle Scholar
  45. Ryu HJ, Oh KK, Kim YS (2009) Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J Ind Eng Chem 15(4):471–475. CrossRefGoogle Scholar
  46. Sheng J, Kim HW, Badalamenti JP, Zhou C, Sridharakrishnan S, Krajmalnik-Brown R, Rittmann BE, Vannela R (2011) Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a bench-top photobioreactor. Bioresour Technol 102(24):11218–11225. CrossRefGoogle Scholar
  47. Solovchenko A, Merzlyak MN, Khozin-Goldberg I, Cohen Z, Boussiba S (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in ∆5 desaturase by nitrogen starvation and high light1. J Phycol 46(4):763–772. CrossRefGoogle Scholar
  48. Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102(3):3071–3076. CrossRefGoogle Scholar
  49. Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30(6):1405–1424. CrossRefGoogle Scholar
  50. Varshney P, Beardall J, Bhattacharya S, Wangikar PP (2018) Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Res 30:28–37CrossRefGoogle Scholar
  51. Villasenor Camacho J, Fernandez Marchante CM, Rodriguez Romero L (2018) Analysis of a photobioreactor scaling up for tertiary wastewater treatment: denitrification, phosphorus removal, and microalgae production. Environ Sci Pollut Res 25:29279–29286. CrossRefGoogle Scholar
  52. Wang X, Hao CB, Zhang F, Feng CP, Yang YN (2011) Inhibition of the growth of two blue-green algae species (Microsystis aruginosa and Anabaena spiroides) by acidification treatments using carbon dioxide. Bioresour Technol 102(10):5742–5748. CrossRefGoogle Scholar
  53. Wen X, Geng Y, Li Y (2014a) Enhanced lipid production in Chlorella pyrenoidosa by continuous culture. Bioresour Technol 161:297–303. CrossRefGoogle Scholar
  54. Wen X, Liang F, Geng Y, Li Y (2014b) Two-stage characteristics of lipid production in batch culture of two green microalgae. Fresenius Environ Bull 23(9):2253–2258Google Scholar
  55. Westerhoff P, Hu Q, Esparza-Soto M, Vermaas W (2010) Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environ Technol 31(5):523–532. CrossRefGoogle Scholar
  56. Xia JL, Gong SQ, Jin XJ, Wan MX, Nie ZY (2013) Effects of simulated flue gases on growth and lipid production of Chlorella sorokiniana CS-01. J Cent South Univ 20(3):730–736. CrossRefGoogle Scholar
  57. Yen HW, Ho SH, Chen CY, Chang JS (2015) CO2, NOx and SOx removal from flue gas via microalgae cultivation: a critical review. Biotechnol J 10(6):829–839. CrossRefGoogle Scholar
  58. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74. CrossRefGoogle Scholar
  59. Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferment Bioeng 82(4):351–354. CrossRefGoogle Scholar
  60. Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers Manag 46(11–12):1868–1876. CrossRefGoogle Scholar
  61. Zhu BH, Sun FQ, Yang M, Lu L, Yang GP, Pan KH (2014) Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresour Technol 174:53–59. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kui Du
    • 1
    • 2
  • Xiaobin Wen
    • 1
  • Zhongjie Wang
    • 1
  • Fang Liang
    • 1
    • 3
  • Liming Luo
    • 1
    • 4
  • Xinan Peng
    • 1
    • 5
  • Yan Xu
    • 1
  • Yahong Geng
    • 1
  • Yeguang Li
    • 1
    Email author
  1. 1.Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenChinese Academy of SciencesWuhanPeople’s Republic of China
  2. 2.Sichuan Provincial Academy of Natural Resource SciencesChengduPeople’s Republic of China
  3. 3.Institute of BioengineeringZhengzhou Normal UniversityZhengzhouPeople’s Republic of China
  4. 4.Department of Pathology and ImmunologyBaylor College of MedicineHoustonUSA
  5. 5.College of Information EngineeringHenan University of Animal Husbandry and EconomyZhengzhouPeople’s Republic of China

Personalised recommendations