Advertisement

Performance evaluation of a photochemical model using different boundary conditions over the urban and industrialized metropolitan area of Vitória, Brazil

  • Rizzieri Pedruzzi
  • Bok H. Baek
  • Barron H. Henderson
  • Nikolle Aravanis
  • Janaina A. Pinto
  • Igor B. Araujo
  • Erick G. S. Nascimento
  • Neyval C. Reis Junior
  • Davidson M. Moreira
  • Taciana Toledo de Almeida AlbuquerqueEmail author
Research Article

Abstract

Metropolitan areas may suffer with increase of air pollution due to the growth of urbanization, transportation, and industrial sectors. The Metropolitan Area of Vitória (MAV) in Brazil is facing air pollution problems, especially because of the urbanization of past years and of having many industries inside the metropolitan area. Developing air quality system is crucial to understand the air pollution mechanism over these areas. However, having a good input dataset for applying on photochemical models is hard and requires quite of research. One input file for air quality modeling which can play a key role on results is the lateral boundary conditions (LBC). This study aimed to investigate the influence of LBC over CMAQ simulation for particulate matter and ozone over MAV by applying four different methods as LBC during August 2010. The first scenario (M1) is based on a fixed, time-independent boundary conditions with zero concentrations for all pollutants; the second scenario (M2) used a fixed, time-independent concentration values, with average values from local monitoring stations; the third CMAQ nesting scenario (M3) used the nested boundary conditions varying with time from a previous simulation with CMAQ over a larger modeling domain, centered on MAV; and finally, the fourth GEOS-Chem scenario (M4) used the boundary conditions varying with time from simulations of global model GEOS-Chem. All scenarios runs are based on the same meteorology conditions and pollutant emissions. The air quality simulations were made over a domain 61 × 79 km centered on coordinates − 20.25° S, − 40.28° W with a resolution of 1 km. The results were evaluated with the measured data from the local monitoring stations. Overall, significant differences on concentrations and number of chemical species between the LBC scenarios are shown across all LBC scenarios. The M3 and M4 dynamic LBC scenarios showed the best performances over ozone estimates while M1 and M2 had poor performance. Although no LBC scenarios do not seem to have a great influence on total PM10 and PM2.5 concentrations, individual PM2.5 species like Na, NO3, and NH4+concentrations are influenced by the dynamic LBC approach, since those hourly individual PM2.5 species from CMAQ nesting approach (M3) and GEOS-Chem model (M4) were used as an input to LBC.

Keywords

Boundary conditions CMAQ GEOS-Chem Emissions inventory PM10 PM2.5 O3 

Notes

Acknowledgements

The authors thank CAPES and FAPESB for the financial support of this work. We extend our thanks to the NQualiAr lab at UFES, which provided the computational infrastructure, the Research Group of University of Florida for the support with Geos-Chem, and IEMA for providing the emissions inventory and data from RAMQAr. Part of this research was also supported by the National Strategic Project-Fine particle of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT(MSIT), the Ministry of Environment (ME), and the Ministry of Health and Welfare (MOHW) (NRF-2017M3D8A1092022).

References

  1. Akritidis D, Zanis P, Katragkou E, Schultz MG, Tegoulias I, Poupkou A, Markakis K, Pytharoulis I, Karacostas T (2013) Evaluating the impact of chemical boundary conditions on near surface ozone in regional climate-air quality simulations over Europe. Atmos Res 134:116–130.  https://doi.org/10.1016/j.atmosres.2013.07.021 CrossRefGoogle Scholar
  2. Albuquerque de ATT, Andrade MDF, Ynoue RY, et al (2018) WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data.  https://doi.org/10.1007/s11356-018-3583-9
  3. Alburquerque TTA (2010) Formação E Transporte Das Partículas Finas Inorgânicas Em Uma Atmosfera Urbana : O Exemplo De São Paulo. PhD Thesis) Universidade de São Paulo-USP, São PauloGoogle Scholar
  4. Bey I, Jacob DJ, Yantosca RM, Logan JA, Field BD, Fiore AM, Li Q, Liu HY, Mickley LJ, Schultz MG (2001) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J Geophys Res Atmos 106:23073–23095.  https://doi.org/10.1029/2001JD000807 CrossRefGoogle Scholar
  5. Borge R, Alexandrov V, José del Vas J, Lumbreras J, Rodríguez E (2008) A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos Environ 42:8560–8574.  https://doi.org/10.1016/j.atmosenv.2008.08.032 CrossRefGoogle Scholar
  6. Borge R, López J, Lumbreras J, Narros A, Rodríguez E (2010) Influence of boundary conditions on CMAQ simulations over the Iberian Peninsula. Atmos Environ 44:2681–2695.  https://doi.org/10.1016/j.atmosenv.2010.04.044 CrossRefGoogle Scholar
  7. Boylan JW, Russell AG (2006) PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos Environ 40:4946–4959.  https://doi.org/10.1016/j.atmosenv.2005.09.087 CrossRefGoogle Scholar
  8. Emery CA, Tai E, Yarwood G (2001) Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Prepared for the Texas Natural Resource Conservation Commission, ENVIRON International Corporation, NovatoGoogle Scholar
  9. Gavidia-Calderón M, Vara-Vela A, Crespo NM, Andrade MF (2018) Impact of time-dependent chemical boundary conditions on tropospheric ozone simulation with WRF-Chem: an experiment over the metropolitan area of São Paulo. Atmos Environ 195:112–124.  https://doi.org/10.1016/j.atmosenv.2018.09.026 CrossRefGoogle Scholar
  10. Gipson GL (1999) Ch13: the initial concentration and boundary condition processors. In: Gipson GL (ed) Science algorithms of the EPA models-3 Community Multiscale Air Quality (CMAQ) modeling system. USEPA, Research Triangle ParkGoogle Scholar
  11. He H, Liang XZ, Lei H, Wuebbles DJ (2016) Future U.S. ozone projections dependence on regional emissions, climate change, long-range transport and differences in modeling design. Atmos Environ 128:124–133.  https://doi.org/10.1016/j.atmosenv.2015.12.064 CrossRefGoogle Scholar
  12. Henderson BH, Akhtar F, Pye HOT, Napelenok SL, Hutzell WT (2014) A database and tool for boundary conditions for regional air quality modeling: description and evaluation. Geosci Model Dev 7:339–360.  https://doi.org/10.5194/gmd-7-339-2014 CrossRefGoogle Scholar
  13. IEMA (2011) Inventário de emissões atmosféricas da Região da Grande Vitória. Instituto Estadual de Meio Ambiente e Recursos Hídricos (IEMA)/EcoSoft. Technical Report. VitóriaGoogle Scholar
  14. IEMA (2014) Relatório Da Qualidade Do Ar Grande Vitória 2010. Instituto Estadual de Meio Ambiente e Recursos Hídricos (IEMA). Technical Report. VitóriaGoogle Scholar
  15. IEMA (2017) Relatório Da Qualidade Do Ar Grande Vitória 2014. Instituto Estadual de Meio Ambiente e Recursos Hídricos (IEMA). Technical Report. VitóriaGoogle Scholar
  16. Jiménez P, Parra R, Baldasano JM (2007) Influence of initial and boundary conditions for ozone modeling in very complex terrains: a case study in the northeastern Iberian Peninsula. Environ Model Softw 22:1294–1306.  https://doi.org/10.1016/j.envsoft.2006.08.004 CrossRefGoogle Scholar
  17. Johnson TM, Guttikunda S, Wells GJ et al (2011) Tools for improving air quality management : a review of top-down source apportionment techniques and their application in developing countries. ESMAP formal report; no. 339/11. World Bank, Washington, DCGoogle Scholar
  18. Li X, Rappenglück B (2014) A WRF-CMAQ study on spring time vertical ozone structure in Southeast Texas. Atmos Environ 97:363–385.  https://doi.org/10.1016/j.atmosenv.2014.08.036 CrossRefGoogle Scholar
  19. Loriato AG (2015) Estudo do transporte atmosférico de MP10 e SO2 com os modelos WRF/CMAQ em regiões costeiras urbanas. (PhD Thesis) Universidade Federal do Espírito Santo-UFES, VitóriaGoogle Scholar
  20. Loriato AG, Salvador N, Ayres A, et al (2018) Inventário de Emissões com Alta Resolução para a Região da Grande Vitória Utilizando o Sistema de Modelagem Integrada. High resolution emissions inventory using WRF-SMOKE-CMAQ integrated modeling for Great Vitoria Region. 521–536.  https://doi.org/10.1590/0102-7786333011
  21. Maioli BG (2011) Quantificação e caracterização do material particulado fino (mp2,5) na Região Metropolitana da Grande Vitória-ES. (Master Thesis) Universidade Federal do Espírito Santo-UFES, VitóriaGoogle Scholar
  22. Nascimento AP (2015) Influência Da Poluição Atmosférica Por So2, MP10, MP2,5 E Sua Composição elementar na incidência de doença respiratória aguda em crianças. (PhD Thesis). Universidade Federal do Espírito Santo-UFES, VitóriaGoogle Scholar
  23. Pfister GG, Parrish DD, Worden H, Emmons LK, Edwards DP, Wiedinmyer C, Diskin GS, Huey G, Oltmans SJ, Thouret V, Weinheimer A, Wisthaler A (2011) Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast. Atmos Chem Phys 11:1769–1790.  https://doi.org/10.5194/acp-11-1769-2011 CrossRefGoogle Scholar
  24. Pongprueksa P (2013) Application of satellite data in a regional model to improve long-term ozone simulations. J Atmos Chem 70:317–340.  https://doi.org/10.1007/s10874-013-9270-9 CrossRefGoogle Scholar
  25. Pour-Biazar A, Khan M, Wang L, Park YH, Newchurch M, McNider RT, Liu X, Byun DW, Cameron R (2011) Utilization of satellite observation of ozone and aerosols in providing initial and boundary condition for regional air quality studies. J Geophys Res Atmos 116:1–32.  https://doi.org/10.1029/2010JD015200 CrossRefGoogle Scholar
  26. Reboredo B, Arasa R, Codina B (2015) Evaluating sensitivity to different options and parameterizations of a coupled air quality modelling system over Bogotá, Colombia. Part I: WRF model configuration. Open J Air Pollut 04:47–64. doi:  https://doi.org/10.4236/ojap.2015.42006
  27. Salvador N (2014) Estudo da Camada Limite Atmosférica em Regiões Metropolitanas Costeiras com simulações de brisa marítima. (PhD Thesis) Universidade Federal do Espírito Santo-UFES, VitóriaGoogle Scholar
  28. Samaali M, Moran MD, Bouchet VS, Pavlovic R, Cousineau S, Sassi M (2009) On the influence of chemical initial and boundary conditions on annual regional air quality model simulations for North America. Atmos Environ 43:4873–4885.  https://doi.org/10.1016/j.atmosenv.2009.07.019 CrossRefGoogle Scholar
  29. Santiago AM (2015) Formação E Transporte De Material Particulado Na Região Metropolitana Da Grande Vitória/ES: Utilização E Avaliação De Desempenho Do Modelo Cmaq. UFESGoogle Scholar
  30. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Second Edition. New JerseyGoogle Scholar
  31. Shi C, Fernando HJS, Hyde P (2012) CMAQ predictions of tropospheric ozone in the U.S. southwest: influence of lateral boundary and synoptic conditions. Sci Total Environ 416:374–384.  https://doi.org/10.1016/j.scitotenv.2011.12.025 CrossRefGoogle Scholar
  32. Tang Y, Lee P, Tsidulko M, Huang HC, McQueen JT, DiMego GJ, Emmons LK, Pierce RB, Thompson AM, Lin HM, Kang D, Tong D, Yu S, Mathur R, Pleim JE, Otte TL, Pouliot G, Young JO, Schere KL, Davidson PM, Stajner I (2009) The impact of chemical lateral boundary conditions on CMAQ predictions of tropospheric ozone over the continental United States. Environ Fluid Mech 9:43–58.  https://doi.org/10.1007/s10652-008-9092-5 CrossRefGoogle Scholar
  33. US-EPA (2005) Technical Support Document for the Final Clean Air Interstate Rule. Technical Report, Research Triangle ParkGoogle Scholar
  34. Zhang H, Chen G, Hu J, Chen SH, Wiedinmyer C, Kleeman M, Ying Q (2014) Evaluation of a seven-year air quality simulation using the weather research and forecasting (WRF)/community multiscale air quality (CMAQ) models in the eastern United States. Sci Total Environ 473–474:275–285.  https://doi.org/10.1016/j.scitotenv.2013.11.121 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rizzieri Pedruzzi
    • 1
    • 2
    • 3
  • Bok H. Baek
    • 3
  • Barron H. Henderson
    • 4
  • Nikolle Aravanis
    • 4
  • Janaina A. Pinto
    • 1
  • Igor B. Araujo
    • 2
  • Erick G. S. Nascimento
    • 5
  • Neyval C. Reis Junior
    • 2
  • Davidson M. Moreira
    • 2
    • 5
  • Taciana Toledo de Almeida Albuquerque
    • 1
    • 2
    Email author
  1. 1.Department of Sanitary and Environmental EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Post Graduation Program on Environmental EngineeringFederal University of Espírito SantoVitóriaBrazil
  3. 3.Institute for the EnvironmentUniversity of North Carolina Chapel HillChapel HillUSA
  4. 4.Department of Environmental Engineering SciencesUniversity of FloridaGainesvilleUSA
  5. 5.SENAI CIMATECSalvadorBrazil

Personalised recommendations