Advertisement

Investigation of toxic effects of amorphous SiO2 nanoparticles on motility and oxidative stress markers in rainbow trout sperm cells

  • Mustafa Erkan ÖzgürEmail author
  • Ahmet Ulu
  • İmren Özcan
  • Sevgi Balcioglu
  • Burhan Ateş
  • Süleyman Köytepe
Research Article
  • 97 Downloads

Abstract

In this study, we investigated the effects of SiO2 nanoparticles (SiO2-NPs) (1, 10, 25, 50, and 100 mg/L) for 24 h in vitro on the motility parameters and oxidative stress markers such as total glutathione (TGSH), catalase (CAT), and malondialdehyde (MDA) of rainbow trout, Oncorhynchus mykiss sperm cells. Therefore, SiO2-NPs were synthesized with sol-gel reaction from tetraethoxy orthosilicate (TEOS). The prepared nanoparticle structures were characterized for chemical structure, morphology and thermal behavior employing Fourier transform infrared spectroscopy, X-ray spectroscopy, scanning electron micrograph, and thermal analysis (DTA/TGA/DSC) techniques. After exposure, there was statistically significant (p < 0.05) decreases in velocities of sperm cells. CAT activity significantly (p < 0.05) decreased by 9.6% in sperm cell treated with 100 mg/L. In addition, MDA level significantly increased by 70.4% and 77.5% in sperm cell treated with 50 and 100 mg/L SiO2-NPs, respectively (p < 0.05). These results showed that SiO2-NPs may have toxic effect on rainbow trout sperm cells in 50 mg/L and more.

Keywords

SiO2-NPs Rainbow trout Sperm cell motility CASA analysis CAT MDA 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Acosta IB, Junior ASV, e Silva EF, Cardoso TF, Caldas JS, Jardim RD, Corcini CD (2016) Effects of exposure to cadmium in sperm cells of zebrafish, Danio rerio. Toxicol Rep 3:696–700.  https://doi.org/10.1016/j.toxrep.2016.08.002 CrossRefGoogle Scholar
  2. Adebayo OA, Akinloye O, Adaramoye OA (2018) Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia 50:e12920.  https://doi.org/10.1111/and.12920 CrossRefGoogle Scholar
  3. Afifi M, Saddick S, Abu Zinada OA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23:754–760.  https://doi.org/10.1016/j.sjbs.2016.06.008 CrossRefGoogle Scholar
  4. Akerboom TPM, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382.  https://doi.org/10.1016/S0076-6879(81)77050-2 CrossRefGoogle Scholar
  5. Azlina HN, Hasnidawani JN, Norita H, Surip SN (2016) Synthesis of SiO2 nanostructures using sol-gel method. Acta Phys Pol A 129:842–844CrossRefGoogle Scholar
  6. Barkalina N, Jones C, Kashir J, Coote S, Huang X, Morrison R, Townley H, Coward K (2014) Effects of mesoporous silica nanoparticles upon the function of mammalian sperm in vitro. Nanomedicine 10:859–870.  https://doi.org/10.1016/j.nano.2013.10.011 CrossRefGoogle Scholar
  7. Billard R (1992) Reproduction in rainbow trout: sex differentiation, dynamics of gametogenesis, biology and preservation of gametes. Aquaculture 100:263–298.  https://doi.org/10.1016/0044-8486(92)90385-X CrossRefGoogle Scholar
  8. Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–777.  https://doi.org/10.1016/j.jhazmat.2014.10.021 CrossRefGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  10. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52.  https://doi.org/10.1016/S0076-6879(78)52032-6
  11. Canesi L, Ciacci C, Balbi T (2015) Interactive effects of nanoparticles with other contaminants in aquatic organisms: friend or foe? Mar Environ Res 111:128–134.  https://doi.org/10.1016/j.marenvres.2015.03.010 CrossRefGoogle Scholar
  12. Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, Feng X, Shao L (2018) The toxicity of silica nanoparticles to the immune system. Nanomedicine 13:1939–1962CrossRefGoogle Scholar
  13. Clément L, Zenerino A, Hurel C, Amigoni S, Taffin de Givenchy E, Guittard F, Marmier N (2013) Toxicity assessment of silica nanoparticles, functionalised silica nanoparticles, and HASE-grafted silica nanoparticles. Sci Total Environ 450–451:120–128.  https://doi.org/10.1016/j.scitotenv.2013.01.042 CrossRefGoogle Scholar
  14. D’Errico G, Vitiello G, De Tommaso G et al (2018) Electron spin resonance (ESR) for the study of reactive oxygen species (ROS) on the isolated frog skin ( Pelophylax bergeri ): a non-invasive method for environmental monitoring. Environ Res 165:11–18.  https://doi.org/10.1016/j.envres.2018.03.044 CrossRefGoogle Scholar
  15. Dumitrescu E, Karunaratne DP, Prochaska MK, Liu X, Wallace KN, Andreescu S (2017) Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish. Environ Pollut 229:439–447.  https://doi.org/10.1016/j.envpol.2017.06.016 CrossRefGoogle Scholar
  16. Fauvel C, Suquet M, Cosson J (2010) Evaluation of fish sperm quality. J Appl Ichthyol 26:636–643.  https://doi.org/10.1111/j.1439-0426.2010.01529.x CrossRefGoogle Scholar
  17. Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U (2010) Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat Toxicol 100:218–228.  https://doi.org/10.1016/j.aquatox.2010.02.019 CrossRefGoogle Scholar
  18. Gallo A, Boni R, Buttino I, Tosti E (2016) Spermiotoxicity of nickel nanoparticles in the marine invertebrate Ciona intestinalis (ascidians). Nanotoxicology 10:1096–1104.  https://doi.org/10.1080/17435390.2016.1177743 CrossRefGoogle Scholar
  19. Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–2198.  https://doi.org/10.1039/C4NR06670G CrossRefGoogle Scholar
  20. Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G (2014) Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol (Lausanne) 5.  https://doi.org/10.3389/fendo.2014.00056
  21. Hatef A, Alavi SMH, Golshan M, Linhart O (2013) Toxicity of environmental contaminants to fish spermatozoa function in vitro-a review. Aquat Toxicol 140–141:134–144.  https://doi.org/10.1016/j.aquatox.2013.05.016 CrossRefGoogle Scholar
  22. Haynes VN, Ward JE, Russell BJ, Agrios AG (2017) Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—current knowledge and suggestions for future research. Aquat Toxicol 185:138–148.  https://doi.org/10.1016/j.aquatox.2017.02.012 CrossRefGoogle Scholar
  23. Johari SA (2015) Toxicity effect of colloidal silver nanoparticles on fertilization capacity and reproduction success of rainbow trout (Oncorhynchus mykiss). J Nanomed Res 1.  https://doi.org/10.15406/jnmr.2014.01.00001
  24. Kime DE, Van Look KJW, McAllister BG et al (2001) Computer-assisted sperm analysis (CASA) as a tool for monitoring sperm quality in fish. Comp Biochem Physiol C Toxicol Pharmacol 130:425–433.  https://doi.org/10.1016/S1532-0456(01)00270-8 CrossRefGoogle Scholar
  25. Kotil T, Akbulut C, Yön ND (2017) The effects of titanium dioxide nanoparticles on ultrastructure of zebrafish testis (Danio rerio). Micron 100:38–44.  https://doi.org/10.1016/j.micron.2017.04.006 CrossRefGoogle Scholar
  26. Krishna Priya K, Ramesh M, Saravanan M, Ponpandian N (2015) Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: hematology, ionoregulation and gill Na+/K+ ATPase activity. Ecotoxicol Environ Saf 120:295–302.  https://doi.org/10.1016/j.ecoenv.2015.05.032 CrossRefGoogle Scholar
  27. Lahnsteiner F, Berger B, Weismann T, Patzner RA (1998) Determination of semen quality of the rainbow trout, Oncorhynchus mykiss, by sperm motility, seminal plasma parameters, and spermatozoal metabolism. Aquaculture 163:163–181.  https://doi.org/10.1016/S0044-8486(98)00243-9 CrossRefGoogle Scholar
  28. Lück H (1965) Catalase. In: Methods of enzymatic analysis. Elsevier, Amsterdam, pp 885–894CrossRefGoogle Scholar
  29. Mahaye N, Thwala M, Cowan DA, Musee N (2017) Genotoxicity of metal based engineered nanoparticles in aquatic organisms: a review. Mutat Res Rev Mutat Res 773:134–160.  https://doi.org/10.1016/j.mrrev.2017.05.004 CrossRefGoogle Scholar
  30. Ozgur ME (2018) The in vitro effect of silica nanoparticles on spermatozoon of rainbow trout (Oncorhynchus mykiss). Fresenius Environ Bull 27:7433–7437Google Scholar
  31. Ozgur ME, Ulu A, Balcioglu S, Ozcan I, Okumus F, Koytepe S, Ates B (2018) Investigation of toxicity properties of flower-like ZnO nanoparticles on Cyprinus carpio sperm cells using computer-assisted sperm analysis (CASA). Turk J Fish Aquat Sci 18:771–780.  https://doi.org/10.4194/1303-2712-v18_6_03 CrossRefGoogle Scholar
  32. Patil NA, Gade WN, Deobagkar DD (2016) Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation. Int J Nanomedicine Volume 11:4509–4519.  https://doi.org/10.2147/IJN.S110390 CrossRefGoogle Scholar
  33. Ramesh R, Kavitha P, Kanipandian N, Arun S, Thirumurugan R, Subramanian P (2013) Alteration of antioxidant enzymes and impairment of DNA in the SiO 2 nanoparticles exposed zebra fish (Danio rerio). Environ Monit Assess 185:5873–5881.  https://doi.org/10.1007/s10661-012-2991-4 CrossRefGoogle Scholar
  34. Rasmussen K, González M, Kearns P, Sintes JR, Rossi F, Sayre P (2016) Review of achievements of the OECD working party on manufactured nanomaterials’ testing and assessment programme. From exploratory testing to test guidelines. Regul Toxicol Pharmacol 74:147–160.  https://doi.org/10.1016/j.yrtph.2015.11.004 CrossRefGoogle Scholar
  35. Shaliutina A, Hulak M, Gazo I, Linhartova P, Linhart O (2013) Effect of short-term storage on quality parameters, DNA integrity, and oxidative stress in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon sperm. Anim Reprod Sci 139:127–135.  https://doi.org/10.1016/j.anireprosci.2013.03.006 CrossRefGoogle Scholar
  36. Shaliutina O, Shaliutina-Kolešová A, Lebeda I, Rodina M, Gazo I (2017) The in vitro effect of nonylphenol, propranolol, and diethylstilbestrol on quality parameters and oxidative stress in sterlet (Acipenser ruthenus) spermatozoa. Toxicol in Vitro 43:9–15.  https://doi.org/10.1016/j.tiv.2017.05.006 CrossRefGoogle Scholar
  37. Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174.  https://doi.org/10.1016/j.aquatox.2015.11.019 CrossRefGoogle Scholar
  38. Voicu SNP, Dinu D, Sima C et al (2015) Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line. Int J Mol Sci 16:29398–29416.  https://doi.org/10.3390/ijms161226171 CrossRefGoogle Scholar
  39. Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22:155–160.  https://doi.org/10.1016/S1001-0742(09)60087-5 CrossRefGoogle Scholar
  40. Wilson N (2018) Nanoparticles: environmental problems or problem solvers?. BioScience 68:241–246.  https://doi.org/10.1093/biosci/biy015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fishery Faculty, Department of AquacultureMalatya Turgut Özal UniversityMalatyaTurkey
  2. 2.Science Faculty, Department of Chemistryİnönü UniversityMalatyaTurkey

Personalised recommendations