Advertisement

A new measurement tool to consider for airborne pollutants evaluations using lichens

  • Soledad Perez Catán
  • Debora Bubach
  • María Inés MessutiEmail author
Short Research and Discussion Article
  • 31 Downloads

Abstract

An important factor affecting acquisition of pollution elements could be the lichen growth form. The Brunauer–Emmett–Teller theory approach has been used to determinate the specific area surface (BET-area) of solids by gas multilayer adsorption. Taking this standard method as a new tool, we measure the specific thallus area in foliose and fruticose lichens to evaluated area/volume relation for bioaccumulation prospects. Some preliminary results of elemental contents such as REEs (La, Sc, Sr) and pollutants (Cd, Co, Pb) were also measured to support the importance to use for the analysis of these thallus attributes.

Keywords

Atmospheric pollutants Brunauer–Emmett–Teller theory Lichen thallus Specific area surface 

Notes

Acknowledgements

The authors express their gratitude to L. Dufou, M. Gosatti, and the laboratory staff of Grupo de Separación Isotópicas, Complejo Tecnológico Pilcaniyeu, Comisión Nacional de Energía Atómica, and Laboratorio de Química of INVAP-SE, for their collaboration in sample analysis. MIM is grateful to Universidad Nacional del Comahue and Consejo Nacional de Investigaciones Científicas y Técnicas. This work was founded by PICT 2015-1269 and Universidad Nacional del Comahue (B04/207) projects.

Compliance with ethical standards

Disclosure of interest

The authors declare that they have no conflict of interest.

References

  1. Baranowska-Bosiacka I, Pienkowski P, Bosiacka B (2001) Content and localisation of heavy metals in thalli of hemerophilous lichens. Pol J Environ Stud 10:213–216Google Scholar
  2. Bargagli R (2016) Moss and lichen biomonitoring of atmospheric mercury: a review. Sci Total Environ 572:216–231CrossRefGoogle Scholar
  3. Begum A, Harikrishna S (2010) Evaluation of some tree species to absorb air pollutants in three industrial locations of South Bengaluru, India. E-J Chem 7:151–156CrossRefGoogle Scholar
  4. Boileau LJR, Beckett PJ, Lavoie P, Richardson DHS (1982) Lichens and mosses as monitors of industrial activity associated with uranium mining in Northern Ontario, Canada, Part 1: field procedures, chemical analysis and interspecies comparisons. Environ Pollution Series B 4:69–84CrossRefGoogle Scholar
  5. Bosch-Roig P, Barca D, Crisci GM, Lall C (2013) Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. J Atmos Chem 70:373–388CrossRefGoogle Scholar
  6. Brown DH, Slingsby DR (1972) The cellular location of lead and potassium in the lichen Cladonia rangiformis (L.) Hoffm. New Phytol 71:297–305CrossRefGoogle Scholar
  7. Bubach D, Perez Catán S, Di Fonzo C, Dopchiz L, Arribére M, Ansaldo M (2016) Elemental composition of Usnea sp. lichen from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Environ Pollut 210:238–245CrossRefGoogle Scholar
  8. Chettri MK, Sawidis T, Karataglis S (1997) Lichens as a tool for biogeochemical prospecting. Ecotoxicol Environ Saf 38:322–335CrossRefGoogle Scholar
  9. Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371CrossRefGoogle Scholar
  10. Kardel F, Wuyts K, Babanezhad M, Vitharana UWA, Wuytack T, Potters G, Samson R (2010) Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environ Pollut 158:788–794CrossRefGoogle Scholar
  11. Monacci F, Fantozzi F, Figueroa R, Parra O, Bargagli R (2012) Baseline element composition of foliose and fruticose lichens along the steep climatic gradient of SW Patagonia (Aisen Region, Chile). J Environ Monit 14:2309–2316CrossRefGoogle Scholar
  12. Nieboer E, Richardson DHS (1978) Lichens and ‘heavy’ metals. Int Lichenological Newsletter 11:1–3Google Scholar
  13. Nieboer E, Richardson DHS (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Pollution Series B 1:3–26CrossRefGoogle Scholar
  14. Oštádal R, Hazdrová J (2016) Thallus morphology of two Antarctic foliose lichens evaluated by a digital optical microscopy approach. Czech Polar Reports 6:80–86CrossRefGoogle Scholar
  15. Osyczka P, Boroń P, Lenart-Boroń A, Rola K (2018) Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity. Environ Sci Pollut Res 25:1950–1961CrossRefGoogle Scholar
  16. Puckett KJ, Finegan EJ (1980) An analysis of the element content of lichens from the Northwest Territories, Canada. Can J Bot 58:2073–2089CrossRefGoogle Scholar
  17. Purvis OW, Williamson BJ, Bartok K, Zoltani N (2000) Bioaccumulation of lead by the lichen Acarospora smaragdula from smelter emissions. New Phytol 147:591–599CrossRefGoogle Scholar
  18. Rindita L, Sudirman I, Koesmaryono Y (2015) Air quality bioindicator using the population of epiphytic macrolichens in Bogor City, West Java. J Biosci 22:53–59Google Scholar
  19. Rivera MS, Perez Catan S, Di Fonzo C, Dopchiz L, Arribere MA, Ansaldo M, Messuti MI, Bubach D (2018) Lichen as biomonitor of atmospheric elemental composition from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Ann Mar Sci 2:9–15Google Scholar
  20. Rola K, Osyczka P, Kafel A (2016) Different heavy metal accumulation strategies of epilithic lichens colonising artificial post-smelting wastes. Arch Environ Contam Toxicol 70:418–428CrossRefGoogle Scholar
  21. Rouquerol J, Rouquerol F, Llewellyn P, Guillaume M, Kenneth SW (2013) Adsorption by powders and porous solids: principles, methodology and applications, 2nd edn. Sing Academic Press, New YorkGoogle Scholar
  22. Sarret GA, Manceau D, Cuny C, Van Halowyn S, Deruelle RJ, Hazemann J, Soldo Y, Eybert-Bérard, Menthonnex J (1998) Mechanisms of lichen resistance to metallic pollution. Environ Sci Technol 32:3325–3330CrossRefGoogle Scholar
  23. Sett R, Kundu M (2016) Epiphytic lichens: their usefulness as bio-indicators of air pollution. DJRES 3:17–24Google Scholar
  24. Sloof JE (1995) Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmos Environ 29:11–20CrossRefGoogle Scholar
  25. St. Clair SB, St. Clair LL, Mangelson NF, Weber DJ, Eggett DL (2002) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105:415–421CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio por Activación NeutrónicaCentro Atómico Bariloche, CNEAS.C. de BarilocheArgentina
  2. 2.INIBIOMA, CONICET-UNComahueS.C. de BarilocheArgentina

Personalised recommendations