Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 13, pp 13580–13591 | Cite as

Linking nano-ZnO contamination to microbial community profiling in sanitary landfill simulations

  • Çağrı AkyolEmail author
  • Emine Gozde Ozbayram
  • Burak Demirel
  • Turgut Tüzün Onay
  • Orhan Ince
  • Bahar Ince
Research Article

Abstract

Nanomaterials (NMs) commercially used for various activities mostly end up in landfills. Reduced biogas productions reported in landfill reactors create a need for more comprehensive research on these greatly-diverse microbial pools. In order to evaluate the impact of one of the most widely-used NMs, namely nano-zinc oxide (nano-ZnO), simulated bioreactor and conventional landfills were operated using real municipal solid waste (MSW) for 300 days with addition nano-ZnO. Leachate samples were taken at different phases and analyzed by 16S rRNA gene amplicon sequencing. The bacterial communities were distinctly characterized by Cloacamonaceae (phylum WWE1), Rhodocyclaceae (phylum Proteobacteria), Porphyromonadaceae (phylum Bacteroidetes), and Synergistaceae (phylum Synergistetes). The bacterial community in the bioreactors shifted at the end of the operation and was dominated by Rhodocyclaceae. There was not a major change in the bacterial community in the conventional reactors. The methanogenic archaeal diversity highly differed between the bioreactors and conventional reactors. The dominance of Methanomicrobiaceae was observed in the bioreactors during the peak methane-production period; however, their prominence shifted to WSA2 in the nano-ZnO-added bioreactor and to Methanocorpusculaceae in the control bioreactor towards the end. Methanocorpusculaceae was the most abundant family in both conventional control and nano-ZnO-containing reactors.

Keywords

Anaerobic microbiome Leachate Nano-ZnO Metagenomics Sanitary landfill 

Notes

Acknowledgments

We thank İlknur Temizel for sample collection and preservation.

Funding information

This work was funded by Boğaziçi University Research Fund Project (project no. 13081) and TUBITAK (project no. 112Y322).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_4906_MOESM1_ESM.pdf (430 kb)
ESM 1 (PDF 429 kb)

References

  1. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87:592–598.  https://doi.org/10.1016/j.renene.2015.10.053 CrossRefGoogle Scholar
  2. Austin B (2014) The family Alcaligenaceae. In: The prokaryotes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 729–757CrossRefGoogle Scholar
  3. Avramescu ML, Rasmussen PE, Chénier M, Gardner HD (2017) Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. Environ Sci Pollut Res 24:1553–1564.  https://doi.org/10.1007/s11356-016-7932-2 CrossRefGoogle Scholar
  4. Bareither CA, Wolfe GL, McMahon KD, Benson CH (2013) Microbial diversity and dynamics during methane production from municipal solid waste. Waste Manag 33:1982–1992.  https://doi.org/10.1016/j.wasman.2012.12.013 CrossRefGoogle Scholar
  5. Bolyard SC, Reinhart DR, Santra S (2013) Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol 47:8114–8122.  https://doi.org/10.1021/es305175e CrossRefGoogle Scholar
  6. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595.  https://doi.org/10.1016/j.wasman.2009.04.001 CrossRefGoogle Scholar
  7. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583.  https://doi.org/10.1038/nmeth.3869 CrossRefGoogle Scholar
  8. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) Correspondence QIIME allows analysis of high- throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat Publ Gr 7:335–336.  https://doi.org/10.1038/nmeth0510-335 CrossRefGoogle Scholar
  9. Cardinali-Rezende J, Debarry RB, Colturato LFDB, Carneiro EV, Chartone-Souza E, Nascimento AMA (2009) Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl Microbiol Biotechnol 84:777–789.  https://doi.org/10.1007/s00253-009-2071-z CrossRefGoogle Scholar
  10. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064.  https://doi.org/10.1016/j.biortech.2007.01.057 CrossRefGoogle Scholar
  11. Demirel B (2016) The impacts of engineered nanomaterials (ENMs) on anaerobic digestion processes. Process Biochem 51:308–313.  https://doi.org/10.1016/j.procbio.2015.12.007 CrossRefGoogle Scholar
  12. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190.  https://doi.org/10.1007/s11157-008-9131-1 CrossRefGoogle Scholar
  13. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284.  https://doi.org/10.1016/j.msec.2014.08.031 CrossRefGoogle Scholar
  14. Eduok S, Hendry C, Ferguson R, Martin B, Villa R, Jefferson B, Coulon F (2015) Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiol Ecol 91:1–9.  https://doi.org/10.1093/femsec/fiv082 CrossRefGoogle Scholar
  15. Eduok S, Ferguson R, Jefferson B, Villa R, Coulon F (2017) Aged-engineered nanoparticles effect on sludge anaerobic digestion performance and associated microbial communities. Sci Total Environ 609:232–241.  https://doi.org/10.1016/j.scitotenv.2017.07.178 CrossRefGoogle Scholar
  16. Fernandes H, Viancelli A, Martins CL, Antonio RV, Costa RHR (2013) Microbial and chemical profile of a ponds system for the treatment of landfill leachate. Waste Manag 33:2123–2128.  https://doi.org/10.1016/j.wasman.2012.10.024 CrossRefGoogle Scholar
  17. Gryta A, Oszust K, Brzezińska M, Ziemiński K, Bilińska-Wielgus N, Frąc M (2017) Methanogenic community composition in an organic waste mixture in an anaerobic bioreactor. Int Agrophysics 31:327–338.  https://doi.org/10.1515/intag-2016-0057 CrossRefGoogle Scholar
  18. Han G, Shin SG, Lee J, Shin J, Hwang S (2017) A comparative study on the process efficiencies and microbial community structures of six full-scale wet and semi-dry anaerobic digesters treating food wastes. Bioresour Technol 245:869–875.  https://doi.org/10.1016/j.biortech.2017.08.167 CrossRefGoogle Scholar
  19. Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki KI, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244–250.  https://doi.org/10.1264/jsme2.ME12189 CrossRefGoogle Scholar
  20. Ju F, Zhang T (2014) Novel microbial populations in ambient and mesophilic biogas-producing and phenol-degrading consortia unraveled by high-throughput sequencing. Microb Ecol 68:235–246.  https://doi.org/10.1007/s00248-014-0405-6 CrossRefGoogle Scholar
  21. Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70.  https://doi.org/10.1021/ez400106t CrossRefGoogle Scholar
  22. Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15.  https://doi.org/10.1007/s11051-013-1692-4
  23. Kim SH, Kwak SY, Suzuki T (2006) Photocatalytic degradation of flexible PVC/TiO2nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC. Polymer (Guildf) 47:3005–3016.  https://doi.org/10.1016/j.polymer.2006.03.015 CrossRefGoogle Scholar
  24. Kim S, Bae J, Choi O, Ju D, Lee J, Sung H, Park S, Sang BI, Um Y (2014) A pilot scale two-stage anaerobic digester treating food waste leachate (FWL): performance and microbial structure analysis using pyrosequencing. Process Biochem 49:301–308.  https://doi.org/10.1016/j.procbio.2013.10.022 CrossRefGoogle Scholar
  25. Lee EH, Moon KE, Kim TG, Cho KS (2014) Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover. J Biotechnol 184:56–62.  https://doi.org/10.1016/j.jbiotec.2014.05.006 CrossRefGoogle Scholar
  26. Li J, Schiavo S, Rametta G, Miglietta ML, la Ferrara V, Wu C, Manzo S (2017) Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum. Environ Sci Pollut Res 24:6543–6553.  https://doi.org/10.1007/s11356-016-8343-0 CrossRefGoogle Scholar
  27. Long XE, Wang J, Huang Y, Yao H (2016) Microbial community structures and metabolic profiles response differently to physiochemical properties between three landfill cover soils. Environ Sci Pollut Res 23:15483–15494.  https://doi.org/10.1007/s11356-016-6681-6 CrossRefGoogle Scholar
  28. Manzo S, Rocco A, Carotenuto R, de Luca Picione F, Miglietta ML, Rametta G, di Francia G (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res 18:756–763.  https://doi.org/10.1007/s11356-010-0421-0 CrossRefGoogle Scholar
  29. Mu H, Chen Y (2011) Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Res 45:5612–5620.  https://doi.org/10.1016/j.watres.2011.08.022 CrossRefGoogle Scholar
  30. Mueller NC, Nowack B (2008) Exposure modelling of engineered nanoparticles in the environment. Environ Sci Technol 42:44447–44453.  https://doi.org/10.1021/es7029637 CrossRefGoogle Scholar
  31. Myer PR, Wells JE, Smith TPL, Kuehn LA, Freetly HC (2015) Microbial community profiles of the colon from steers differing in feed efficiency. Springerplus 4:454.  https://doi.org/10.1186/s40064-015-1201-6 CrossRefGoogle Scholar
  32. Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT (2016) Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10:2478–2487.  https://doi.org/10.1038/ismej.2016.33 CrossRefGoogle Scholar
  33. Oren A (2014) The family Rhodocyclaceae. In: The prokaryotes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 975–998CrossRefGoogle Scholar
  34. Oren A (2014b) The family Methanomicrobiaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: other major lineages of bacteria and the archaea. Springer, Berlin, Heidelberg, pp 231–246Google Scholar
  35. Oren A (2014c) The family Methanocorpusculaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: other major lineages of bacteria and the archaea. Springer, Berlin, Heidelberg, pp 225–230Google Scholar
  36. Otero-González L, Field JA, Sierra-Alvarez R (2014) Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. J Environ Manag 135:110–117.  https://doi.org/10.1016/j.jenvman.2014.01.025 CrossRefGoogle Scholar
  37. Ozbayram EG, Kleinsteuber S, Nikolausz M, Ince B, Ince O (2017) Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Anaerobe 46:122–130.  https://doi.org/10.1016/j.anaerobe.2017.03.013 CrossRefGoogle Scholar
  38. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles - an antimicrobial study. Sci Technol Adv Mater 9:035004.  https://doi.org/10.1088/1468-6996/9/3/035004 CrossRefGoogle Scholar
  39. Palleroni NJ (1981) Introduction to the family Pseudomonadaceae. In: Starr MP, Stolp H, Trüper HG et al (eds) The prokaryotes: a handbook on habitats, isolation, and identification of Bacteria. Springer, Berlin, Heidelberg, pp 655–665CrossRefGoogle Scholar
  40. Pohland FG, Kim JC (1999) In situ anaerobic treatment of leachate in landfill bioreactors. Water Sci Technol 40:203 LP–203210CrossRefGoogle Scholar
  41. Rekha K, Nirmala M, Nair MG, Anukaliani A (2010) Structural, optical, photocatalytic and antibacterial activity of zinco xide and manganese doped zinc oxide nanoparticles. Phys B Condens Matter 405:3180–3185.  https://doi.org/10.1016/j.physb.2010.04.042 CrossRefGoogle Scholar
  42. Sakarya K, Akyol Ç, Demirel B (2015) The effect of short-term exposure of engineered nanoparticles on methane production during mesophilic anaerobic digestion of primary sludge. Water Air Soil Pollut 226:100.  https://doi.org/10.1007/s11270-015-2366-x
  43. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60.  https://doi.org/10.1186/gb-2011-12-6-r60 CrossRefGoogle Scholar
  44. Song R, Shi Q, Abdrabboh GAA, Wei R (2017) Characterization and antibacterial activity of the nanocomposite of half-fin anchovy (Setipinna taty) hydrolysates/zinc oxide nanoparticles. Process Biochem 62:223–230.  https://doi.org/10.1016/j.procbio.2017.07.002 CrossRefGoogle Scholar
  45. Stamps BW, Lyles CN, Suflita JM, Masoner JR, Cozzarelli IM, Kolpin DW, Stevenson BS (2016) Municipal solid waste landfills harbor distinct microbiomes. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.00534
  46. Temizel İ, Emadian SM, Di Addario M et al (2017) Effect of nano-ZnO on biogas generation from simulated landfills. Waste Manag 63:18–26.  https://doi.org/10.1016/j.wasman.2017.01.017 CrossRefGoogle Scholar
  47. Wang X, Cao A, Zhao G, Zhou C, Xu R (2017) Microbial community structure and diversity in a municipal solid waste landfill. Waste Manag 66:79–87.  https://doi.org/10.1016/j.wasman.2017.04.023 CrossRefGoogle Scholar
  48. Wilkins D, Rao S, Lu X, Lee PKH (2015) Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.01114
  49. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microbiol 77:2325–2331.  https://doi.org/10.1128/AEM.02149-10 CrossRefGoogle Scholar
  50. Xie B, Xiong S, Liang S, Hu C, Zhang X, Lu J (2012) Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate. Bioresour Technol 103:71–77.  https://doi.org/10.1016/j.biortech.2011.09.114 CrossRefGoogle Scholar
  51. Yang Y, Xu M, Wall JD, Hu Z (2012) Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag 32:816–825.  https://doi.org/10.1016/j.wasman.2012.01.009 CrossRefGoogle Scholar
  52. Yang Y, Gajaraj S, Wall JD, Hu Z (2013a) A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics. Water Res 47:3422–3430.  https://doi.org/10.1016/j.watres.2013.03.040 CrossRefGoogle Scholar
  53. Yang Y, Zhang C, Hu Z (2013b) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Process Impacts 15:39–48.  https://doi.org/10.1039/c2em30655g CrossRefGoogle Scholar
  54. Yazici Guvenc S, Alan B, Adar E, Bilgili MS (2017) The impact of nanoparticles on aerobic degradation of municipal solid waste. Waste Manag Res 35:426–436.  https://doi.org/10.1177/0734242X17695884 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Environmental SciencesBoğaziçi UniversityIstanbulTurkey
  2. 2.Department of Environmental Engineering, Faculty of Civil EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations