Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 16, pp 16727–16741 | Cite as

Toxicological effects of toxic metals (cadmium and mercury) on blood and the thyroid gland and pharmacological intervention by vitamin C in rabbits

  • Rida Khan
  • Shaukat AliEmail author
  • Shumaila Mumtaz
  • Saiqa Andleeb
  • Mazhar Ulhaq
  • Hafiz Muhammad Tahir
  • Muhammad Khalil Ahmad Khan
  • Muhammad Adeeb Khan
  • Hafiz Abdullah Shakir
Research Article

Abstract

Cadmium and mercury are non-biodegradable toxic metals that may cause many detrimental effects to the thyroid gland and blood. Vitamin C has been found to be a significant chain-breaking antioxidant and enzyme co-factor against metal toxicity and thus make them less available for animals. The current study was performed to find the effect of individual metals (cadmium and mercury), their co-administration, and the ameliorative effects of vitamin C on some of the parameters that indicate oxidative stress and thyroid dysfunction. Cadmium chloride (1.5 mg/kg), mercuric chloride (1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to eight treatment groups of the rabbits (1. control; 2. Vit C; 3. CdCl2; 4. HgCl2; 5. Vit C + CdCl2; 6. Vit C + HgCl2; 7. CdCl2 + HgCl2, and 8. Vit C + CdCl2 + HgCl2). After the biometric measurements of all experimental rabbits, biochemical parameters viz. triidothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), and triglycerides were measured using commercially available kits. The results exhibited significant decline (p < 0.05) in mean hemoglobin, corpuscular hemoglobin, packed cell volume, T3 (0.4 ± 0.0 ng/ml), and T4 (26.3 ± 1.6 ng/ml) concentration. While, TSH (0.23 ± 0.01 nmol/l) and triglyceride (4.42 ± 0.18 nmol/l) were significantly (p < 0.05) increased but chemo-treatment with Vit C reduces the effects of Cd, Hg, and their co-administration but not regained the values similar to those of controls. This indicates that Vit C had a shielding effect on the possible metal toxicity. The Cd and Hg also found to accumulate in vital organs when measured by atomic absorption spectrophotometer. The metal concentration trend was observed as follows: kidney > liver > heart > lungs. It was concluded that Cd and Hg are toxic and tended to bioaccumulate in different organs and their toxic action can be subdued by vitamin C in biological systems.

Keywords

Thyroid Toxic metals Trace elements Bioaccumulation Antioxidants 

Notes

Referencess

  1. Akinhanmi TF, Ademuyiwa O, Odukoya OO, Babayemi DO, Ogunlesi AO, Adamson I, Akinhanmi AO (2016) Amelioration of lead toxicity in an occupationally exposed population with ascorbic acid. J Chem Soc Nigeria 41(1):69–75Google Scholar
  2. Ali TH, Abed AA, Abdul Ellah A (2016) Cadmium accumulation in some organs of mosquito fish Gambusia holbrooki. TJPS 21(1):16–18Google Scholar
  3. Ali S, Hussain S, Khan R, Mumtaz S, Ashraf N, Andleeb S, Shakir HA, Tahir HM, Khan MKA, Ulhaq M (2019) Renal toxicity of heavy metals (cadmium and mercury) and their amelioration with ascorbic acid in rabbits. Environ Sci Pollut Res Int 26(4):3909–3920CrossRefGoogle Scholar
  4. Badiei K, Mostaghni K, Nikghadam P, Paurjafar M (2010) The effect of mercury on thyroid function of sheep. Intern J Vet Res 4(4):277–281Google Scholar
  5. Barregård L, Lindstedt G, Schütz A, Sällsten G (1994) Endocrine function in mercury exposed chloralkali workers. Occup Environ Med 51(8):536–540CrossRefGoogle Scholar
  6. Bhattacharjee CR, Deys S, Goswami P (2003) Protective role of ascorbic acid against lead toxicity in blood of albino mice as revealed by metal uptake, lipid profiles, and ultrastructural features of erythrocytes. Bull Environ Contam Toxicol 70:1189–1196CrossRefGoogle Scholar
  7. Buha A, Wallace D, Matovic V, Schweitzer A, Oluic B, Micic D, Djordjevic V (2017) Cadmium exposure as a putative risk factor for the development of pancreatic cancer: three different lines of evidence. Biomed Res Int 2017:1–8CrossRefGoogle Scholar
  8. Buha A, Matovic V, Antonijevic B, Bulat Z, Curcic M, Renieri EA, Tsatsakis AM, Schweitzer A, Wallace D (2018) Overview of cadmium thyroid disrupting effects and mechanisms. Int J Mol Sci 19(5):1501CrossRefGoogle Scholar
  9. Chaurasia SS, Gupta P, Kar A, Maiti PK (1996) Free radical mediated membrane perturbation and inhibition of type-I iodothyronine 5′-monodeiodinase activity by lead and cadmium in rat liver homogenate. Biochem Mol Biol Int 39:765–770Google Scholar
  10. Das K, Siebert U, Gillet A, Dupont A, Di-Poď C, Fonfara S, Mazzucchelli G, De Pauw E, De Pauw-Gillet MC (2008) Mercury immune toxicity in harbour seals: links to in vitro toxicity. Environ Health 7:52–60CrossRefGoogle Scholar
  11. Dorgalaleh A, Mahmoodi M, Varmaghani B, Kiani NF, Saeeidi KO, Alizadeh SH, Tabibian SH, Bamedi T, Momeni M, Abbasian S, KashaniKhatib Z (2013) Effect of thyroid dysfunctions on blood cell count and red blood cell indice. Iran J Ped Hematol Oncol 3(2):73–77Google Scholar
  12. Edwards J, Ackerman C (2016) A review of diabetes mellitus and exposure to the environmental toxicant cadmium with an emphasis on likely mechanisms of action. Curr Diabetes Rev 12:252–258CrossRefGoogle Scholar
  13. Ellingsen DG, Efskind J, Haug E, Thomassen Y, Martinsen I, Gaarder PI (2000) Effects of low mercury vapour exposure on the thyroid function in chloralkali workers. J Appl Toxicol 20:483–489CrossRefGoogle Scholar
  14. Falnoga I, Tusek-Znidaric M, Horvat M, Stegnar P (2000) Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers. Environ Res 84:211–218CrossRefGoogle Scholar
  15. Feki-Tounsi M, Hamza-Chaffai A (2014) Cadmium as a possible cause of bladder cancer: a review of accumulated evidence. Environ Sci Pollut Res 21:10561–10573CrossRefGoogle Scholar
  16. Gabol K, Khan MZ, Khan MUA, Khan P, Fatima F, Siddiqui S, Jabeen T, Baig N, Iqbal MA, Usman M, Hashmi A, Tabish M (2014) Induced effects of lead, chromium and cadmium on Gallus domesticus. Can J Pure App Sci:30–35Google Scholar
  17. Grosicki A (2004) Influence of vitamin C on cadmium absorption and distribution in rats. J Trace Elem Med Biol 18(2):183–187CrossRefGoogle Scholar
  18. Gupta P, Kar A (1999) Cadmium induced thyroid dysfunction in chicken; hepatic type I iodothyronine 5-D-I activity and role of lipid peroxidation. Biochm Physiolo Pharmacol Endocrinol 123(1):39–44Google Scholar
  19. Hartwig A (2013) Cadmium and cancer. Met Ions Life Sci 11:491–507CrossRefGoogle Scholar
  20. Herbaczynska CK, Ktoseiewicz WB, Cedro K, Wasek BW (1995) Supplementation with vitamins C and E suppresses leukocyte oxygen free radical production in patients with myocardial infarction. Eur Heart J 16:1044–1049CrossRefGoogle Scholar
  21. Hounkpatin ASY, Johnson RC, Guedenon P, Domingo E, Alimba CG, Boko M, Edorh PA (2012) Protective effects of vitamin C on haematological parameters in intoxicated wistar rats with cadmium, mercury and combined cadmium and mercury. Int Res J Biol Sci 1(8):76–81Google Scholar
  22. IARC (2012) Personal habits and indoor combustions, volume 100. Lyon, FranceGoogle Scholar
  23. Ibraheem AS, Seleem AA, El-Sayed MF, Hamad BH (2016) Single or combined cadmium and aluminum intoxication of mice liver and kidney with possible effect of zinc. J Basic Appl Zoo 77:91–101CrossRefGoogle Scholar
  24. Iddah MA, Macharia BN, Ng’wena AG, Keter A, Ofulla AV (2013) Thyroid hormones and hematological indices levels in thyroid disorders patients at moi teaching and referral hospital, Western Kenya. ISRN Endocrinol, 2013, 385940.  https://doi.org/10.1155/2013/385940
  25. Jancic SA, Stosic BZ (2014) Cadmium effects on the thyroid gland. Vitam Horm 94:391–425CrossRefGoogle Scholar
  26. Javed M, Usmani N (2012) Toxic effects of heavy metals (Cu, Ni, Fe Co, Mn, Cr, Zn) to the haematology of Mastacembelus armatus thriving in Harduaganj Reservoir, Aligarh, India. Glob J Med Res 12:59–64Google Scholar
  27. Javed M, Usmani N (2015) Impact of heavy metal toxicity on hematology and glycogen status of fish: a review. Proc Natl Acad Sci India Sect B Biol Sci 85:889–900CrossRefGoogle Scholar
  28. Jiraungkoorskul W, Sahaphong S, Kosai P, Kim MH (2007) The effect of ascorbic acid on cadmium exposure in the gills of Puntius altus. Int J Zool Res 3:77–85CrossRefGoogle Scholar
  29. Josthna P, Geetharathan T, Sujatha P, Deepika G (2012) Accumulation of lead and cadmium in the organs and tissues of albino rat. Int J Pharm Life Sci 3(12):2186–2189Google Scholar
  30. Jurczuk M, Moniuszko-Jakoniuk J, Brzoska MM, Roszczenko A (2005) Vitamins E and C concentrations in the liver and kidney of rats exposed to cadmium and ethanol. Pol J Environ Stud 14(5):599Google Scholar
  31. Kawada J, Nishida M, Yoshimura Y, Mitani K (1980) Effects of organic and inorganic mercurials on thyroidal functions. Aust J Pharm 3(3):149–159Google Scholar
  32. Kelly GS (2000) Peripheral metabolism of thyroid hormones: a review. Altern Med Rev 5:306–333Google Scholar
  33. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220CrossRefGoogle Scholar
  34. Lange IG, Daxenberger A, Schiffer B, Witters H, Ibarreta D, Meyer HHD (2002) Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Anal Chim Acta 473:27–37CrossRefGoogle Scholar
  35. Larsson SC, Orsini N, Wolk A (2015) Urinary cadmium concentration and risk of breast cancer: a systematic review and dose-response meta-analysis. Am J Epidemiol 182:375–380CrossRefGoogle Scholar
  36. Lin TJ, Huang YL, Chang JS, Liu KT, Yen MC, Chen FW, Shih YL, Jao JC, Huang PC, Yeh IJ (2018) Optimal dosage and early intervention of l-ascorbic acid inhibiting K2Cr2O7-induced renal tubular cell damage. J Trace Elem Med Biol 48:1–7CrossRefGoogle Scholar
  37. Linne JJ. Ringsrud KM (1999) Clinical laboratory science, the basic and routine techniques. 4th ed., Saint Louis, Moseby. pp: 279–295.Google Scholar
  38. Maffini MV, Rubin BS, Sonnensschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254–255:179–186CrossRefGoogle Scholar
  39. Matović V, Buha A, Bulat Z, Đukić-Ćosić D (2011) Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium. Arch Ind Hyg Toxicol 62:65–76Google Scholar
  40. Matović V, Buha A, Dukić-Ćosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140CrossRefGoogle Scholar
  41. Meyer KJ, Reif JS, Veeramachaneni DN, Luben TJ, Mosley BS, Nuckols JR (2006) Agricultural pesticide use and hypospadias in eastern Arkansas. Environ Health Perspect 114:1589–1595CrossRefGoogle Scholar
  42. Mezynska M, Brzóska MM (2018) Environmental exposure to cadmium—a risk for health of the general population in industrialized countries and preventive strategies. Environ Sci Pollut Res 25:3211–3232CrossRefGoogle Scholar
  43. Naito HK (1984) High-density lipoprotein (HDL) cholesterol. Kaplan A et al. Clin Chem The C.V. Mosby Co. St Louis, Toronto, Princeton, pp 1207–1213 and 437Google Scholar
  44. Nishida M, Yamamoto T, Yoshimura Y, Kawada J (1986) Subacute toxicity of methylmercuric chloride and mercuric chloride on mouse thyroid. Aust J Pharm 9:331–338Google Scholar
  45. Okediran BS, Kasali OB, Omotainse SO, Akinloye OA (2016) Haemato-biochemical alterations as biomarkers of lead induced toxicity in male wistar rats. Bangl J Vet Med 14(2):227–232CrossRefGoogle Scholar
  46. Pacyna JM, Travnikov O, De Simone F, Hedgecock IM, Sundseth K, Pacyna EG, Steenhuisen F, Pirrone N, Munthe J, Kindbom K (2016) Current and future levels of mercury atmospheric pollution on a global scale. Atmos Chem Phys 16(19):12495–12511CrossRefGoogle Scholar
  47. Paier B, Hagmüller K, Noli MI, Gonzalez PM, Stiegler C, Zaninovich AA (1993) Changes induced by cadmium administration on thyroxine deiodination and sulfhydryl groups in rat liver. J Endocrinol 138:219–224CrossRefGoogle Scholar
  48. Pal D, Suman S, Kolluru V, Sears S, Das TP, Alatassi H, Ankem MK, Freedman JH, Damodaran C (2017) Inhibition of autophagy prevents cadmium-induced prostate carcinogenesis. Br J Cancer 117(1):56–64CrossRefGoogle Scholar
  49. Person RJ1, Tokar EJ, Xu Y, Orihuela R, Ngalame NN, Waalkes MP (2013) Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicol Appl Pharmacol 273(2):281–288CrossRefGoogle Scholar
  50. Pollack AZ, Schisterman EF, Goldman LR, Mumford SL, Albert PS, Jones RL, Wactawski-Wende J (2011) Cadmium, lead, and mercury in relation to reproductive hormones and anovulation in premenopausal women. Environ Health Perspect 119:1156–1161CrossRefGoogle Scholar
  51. Pratima G, Anand K (1998) Role of ascorbic acid in cadmium-induced thyroid dysfunction and lipid peroxidation. J Appl Toxicol 18(5):317–320CrossRefGoogle Scholar
  52. Rana MN, Tangpong J, Rahman MM (2018) T oxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep 5:704–713CrossRefGoogle Scholar
  53. Ruze M, Juna C, Jose G (1999) Single and multiple selenium-zinc-iodine deficiencies affect rat thyroid metabolism and ultra-structure. J Nutr 129:174–180CrossRefGoogle Scholar
  54. Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721CrossRefGoogle Scholar
  55. Silva N, Peiris-John R, Wickremasinghe R, Senanayake H, Sathiakumar N (2012) Cadmium a metalloestrogen: are we convinced? J Appl Toxicol 32:318–332CrossRefGoogle Scholar
  56. Siraj M, Khisroon M, Khan A (2016) Bioaccumulation of heavy metals in different organs of Wallago attu from River Kabul Khyber Pakhtunkhwa, Pakistan. Biol Trace Elem Res 172(1):242–250CrossRefGoogle Scholar
  57. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35(4):291–314CrossRefGoogle Scholar
  58. Sundseth K, Pacyna JM, Pacyna EG, Pirrone N, Thorne RJ (2017) Global sources and pathways of mercury in the context of human health. Int J Environ Res Public Health 14(1):105–112CrossRefGoogle Scholar
  59. Suzuki Y (1990) Synergism of ascorbic acid and glutathione in reduction of hexavalent chromium in vitro. Ind Health 28:9–19CrossRefGoogle Scholar
  60. Tay CK, Asmah R, Biney CA (2009) Trace metal levels in water and sediment from the sakumoii and muni lagoons, Ghana. West. Afric J Appl Ecol 16:75–94Google Scholar
  61. Truby P (2003) Impact of heavy metals on forest trees from mining areas. International conference on mining and the environment III, Sudbury, Ontario, pp 25–36Google Scholar
  62. Uetani M, Kobayashi E, Suwazono Y, Honda R, Nishijo M, Nakagawa H, Kido T and Nogawa K (2006) Tissue cadmium (Cd) concentrations of people living in a Cd polluted area, Japan. BioMetals 19(5):521–525Google Scholar
  63. Vahter ME, Mottet NK, Friberg LT, Lind SB, Charleston JS, Burbacher TM (1995) Demethylation of methyl mercury in different brain sites of Macaca fascicularis monkeys during long-term subdinical methyl mercury exposure. Toxicol Appl Pharmacol 134:273–284CrossRefGoogle Scholar
  64. Wade MG, Sophi P, Kenneth W, Edward Y (2003) Thyroid toxicity due to subchronic exposure to a complex mixture of 16 organochlorines, lead, and cadmium. Toxicol Sci 67:207–218CrossRefGoogle Scholar
  65. Wilson JX (2002) The physiological role of dehydroascorbic acid. FEBS Lett 527:5–9CrossRefGoogle Scholar
  66. Yoshizuko M, Mori N, Hamasaki K (1991) Cadmium toxicity in thyroid gland of pregnant rats. Exp Mol Pathol 55(1):97–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rida Khan
    • 1
  • Shaukat Ali
    • 2
    Email author
  • Shumaila Mumtaz
    • 1
  • Saiqa Andleeb
    • 1
  • Mazhar Ulhaq
    • 3
  • Hafiz Muhammad Tahir
    • 2
  • Muhammad Khalil Ahmad Khan
    • 4
  • Muhammad Adeeb Khan
    • 1
  • Hafiz Abdullah Shakir
    • 5
  1. 1.Department of ZoologyThe University of Azad Jammu and KashmirMuzaffarabadPakistan
  2. 2.Department of ZoologyGovernment College UniversityLahorePakistan
  3. 3.Department of Veterinary Biomedical SciencesPMAS Arid Agriculture UniversityRawalpindiPakistan
  4. 4.Department of ZoologyGovernment College of ScienceLahorePakistan
  5. 5.Department of ZoologyUniversity of the PunjabLahorePakistan

Personalised recommendations