Environmental Science and Pollution Research

, Volume 26, Issue 16, pp 16303–16315 | Cite as

Target and non-target botanical pesticides effect of Trichodesma indicum (Linn) R. Br. and their chemical derivatives against the dengue vector, Aedes aegypti L.

  • Muthiah Chellappandian
  • Sengottayan Senthil-NathanEmail author
  • Prabhakaran Vasantha-Srinivasan
  • Sengodan Karthi
  • Annamalai Thanigaivel
  • Kandaswamy Kalaivani
  • Haridoss Sivanesh
  • Vethamonickam Stanley-Raja
  • Kanagaraj Muthu-Pandian Chanthini
  • Narayanan Shyam-Sundar
Research Article


The effects of crude ethanol derived leaf extract Trichodesma indicum (Linn) (Ex-Ti) and their chief derivatives were accessed on the survival and development of the dengue mosquito Ae. aegypti also their non-toxic activity against mosquito predator. T. indicum is recognized to be the vital weed plant and a promising herb in the traditional ayurvedic medicine. In this study, the GC-MS chromatogram of Ex-Ti showed higher peak area percentage for cis-10-Heptadecenoic acid (21.83%) followed by cycloheptadecanone (14.32%). The Ex-Ti displayed predominant mortality in larvae with 96.45 and 93.31% at the prominent dosage (200 ppm) against III and IV instar. Correspondingly, sub-lethal dosage against the enzymatic profile of III and IV instar showed downregulation of α,β-carboxylesterase and SOD protein profiles at the maximum concentration of 100 ppm. However, enzyme level of GST as well as CYP450 increased significantly dependent on sub-lethal concentration. Likewise, fecundity and hatchability of egg rate of dengue mosquito decreased to the sub-lethal concentration of Ex-Ti. Repellent assay illustrates that Ex-Ti concentration had greater protection time up to 210 min at 100 ppm. Also, activity of Ex-Ti on adult mosquito displayed 100% mortality at the maximum dosage of 600, 500 and 400 ppm within the period of 50, 60 and 70 min, respectively. Photomicrography screening showed that lethal dosage of Ex-Ti (100 ppm) produced severe morphological changes with dysregulation in their body parts as matched to the control. Effects of Ex-Ti on the Toxorhynchites splendens IV instar larvae showed less mortality (43.47%) even at the maximum dosage of 1500 ppm as matched to the chemical pesticide Temephos. Overall, the present research adds a toxicological valuation on the Ex-Ti and their active constituents as a larvicidal, repellent and adulticidal agents against the global burdening dengue mosquito.


Indian borage Dengue vector Enzyme SOD CYP450 Temephos Non-target 


Funding information

Author MC was supported by the Department of Science and Technology, Science and Engineering Research Board (SERB), Government of India (File No. PDF/2016/001185).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Agra-Neto AC, Napoleão TH, Pontual EV, Santos NDL, Luz LA, Oliveira CMF, Melo-Santos MAV, Coelho LCBB, Navarro DMAF, Paiva PMG (2015) Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate. Parasitol Res 113:175–184CrossRefGoogle Scholar
  3. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805CrossRefGoogle Scholar
  4. Benelli G, Jeffries CL, Walker T (2016) Biological control of mosquito vectors: past, present, and future. Insects 7:1–18CrossRefGoogle Scholar
  5. Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M, Bindhu MR, Govindarajan M, Khanday AL (2016) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against rose aphid, Macrosiphum rosae. J Nanoscience, 7
  6. Buhroo AA, Nisa G, Asrafuzzaman S, Prasad R, Rasheed R, Bhattacharyya A (2017) Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J Plant Protection Res 57(2):108–114CrossRefGoogle Scholar
  7. Cheah S, Tay J, Chan L, Jaal Z (2013) Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 112:3275–3282CrossRefGoogle Scholar
  8. Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin E, Ponsankar A, Selin-Rani S, Kalaivani K, Senthil-Nathan S, Benelli G (2017) Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn. and impacts on a beneficial mosquito predator. Environ Sci Pollut Res Int 11:10294–10306Google Scholar
  9. Chellappandian M, Vasantha-Srinivasan P, Senthil-Nathan S, Karthi S, Thanigaivel A, Ponsankar A, Kalaivani K, Hunter WB (2018) Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ Inter 113:214–230CrossRefGoogle Scholar
  10. David JP, Faucon F, Chandor-Proust A, Poupardin R, Riaz MA, Bonin A, Navratil V, Reynaud S (2014) Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. BMC Genomics 15:174CrossRefGoogle Scholar
  11. Deming R, Manrique-Saide P, Barreiro AM, Cardena EUK, Che-Mendoza A, Jones B, Leibman K, Vizcaino L, Vazquez-Prokopec G, Lenhart A (2016) Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit Vectors 9:67CrossRefGoogle Scholar
  12. Diniz DFA, de Melo-Santos MAV, de Mendonca Santos EA, Beserra EB, Helvecio E, de Carvalho-Leandro D, dos Santos BS, de Menezes Lima VL, Ayres CVJ (2015) Fitness cost in field and laboratory Aedes aegypti populations associated with resistance to the insecticide Temephos. Parasit Vectors 8:662CrossRefGoogle Scholar
  13. Edwin E, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Ponsankar A, Pradeepa V, Selin-Rani S, Kalaivani K, Hunter WB, Abdel-Megeed A, Duraipandiyan V, Al-Dhabi NA (2016) Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 163:167–178CrossRefGoogle Scholar
  14. Elumalai D, Hemavathi M, Hemalatha P, Deepa CV, Kaleena PK (2016) Larvicidal activity of catechin isolated from Leucas aspera against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 115(3):1203–1212CrossRefGoogle Scholar
  15. Govindarajan M (2011a) Evaluation of Andrographis paniculata Burm.F. (family:Acanthaceae) extracts against Culex quinquefasciatus (say.) and Aedes aegypti (Linn.) (Diptera:Culicidae). Asian Pac J Tro Med 4:176–181CrossRefGoogle Scholar
  16. Govindarajan M, Rajeswary M, Benelli G (2016a) Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: an eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Safety 129:85–90CrossRefGoogle Scholar
  17. Govindarajan M (2011b) Evaluation of indigenous plant extracts against the malarial vector, Anopheles stephensi (Liston) (Diptera: Culicidae). Parasitol Res 109(1):93–103CrossRefGoogle Scholar
  18. Govindarajan M, Rajeswary M, Hoti SL, Benelli G (2016b) Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res Veterinary Sci 104:77–82CrossRefGoogle Scholar
  19. Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K (2008) Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extract on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 103:691–695CrossRefGoogle Scholar
  20. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed 1:43–48CrossRefGoogle Scholar
  21. Kabir KE, Choudhary MI, Ahmed S, Tariq RM (2013) Growth-disrupting, larvicidal and neurobehavioral toxicity effects of seed extract of Seseli diffusum against Aedes aegypti (L.) (Diptera: Culicidae). Ecotoxicol Environ Saf 90:52–60CrossRefGoogle Scholar
  22. Kalaivani K, Maruthi-Kalaiselvi M, Senthil-Nathan S (2016) Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Nature Sci Rep 6:34498Google Scholar
  23. Kalaivani K, Senthil-Nathan S, Murugesan AG (2012) Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 110:1261–1268CrossRefGoogle Scholar
  24. Koodalingam A, Mullainadhan P, Arumugam M (2011) Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop 118:27–36CrossRefGoogle Scholar
  25. Larson RT, Lorch JM, Pridgeon JW, Becnel JJ, Clark GG (2010) The biological activity of α-Mangostin, a larvicidalotanic mosquito sterol carrier protein-2 inhibitor. J Med Entomol 47(2):249–257Google Scholar
  26. Mangai M (2018) Pharmacological efficacy of Trichodesma indicum (Linn) R. BR., in folk medicine—an updated review. Asian J Pharma Clin Res 11:24–27CrossRefGoogle Scholar
  27. Napoleão TH, Pontual EV, Lima TA, Santos NDL, Sá RA, Coelho LCBB, Navarro DMAF, Paiva PMG (2012) Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res 110:609–616CrossRefGoogle Scholar
  28. Pavela R, Govindarajan M (2017) The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci 90:369–378CrossRefGoogle Scholar
  29. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187CrossRefGoogle Scholar
  30. Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, van der Sluijs JP, van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102CrossRefGoogle Scholar
  31. Ponsankar A, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin E et al (2016) Target and non-target toxicity of botanical insecticide derived from Couroptia guianensis L. flower against generalist herbivore, Spodoptera litura fab. And an earthworm, Eisenia foetida Savigny. Ecotoxicol Environ Saf 133:260–270CrossRefGoogle Scholar
  32. Prasad R (2014) Synthesis of silver nanoparticles in photosynthesis plants. J Nanoparticles 2014:1–8CrossRefGoogle Scholar
  33. Rehman JU, Ali A, Khan IA (2014) Plant based products: use and development as repellents against mosquitoes: a review. Fitoterapia 95:65–74CrossRefGoogle Scholar
  34. Rodrigues AM, De Paula JE, Roblot F, Fournet A, Espíndola LS (2005) Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia. 76:755–757CrossRefGoogle Scholar
  35. Selin-Rani S, Senthil-Nathan S, Revathi K, Chandrasekaran R, Thanigaivel A, Vasantha-Srinivasan P, Ponsankar A, Edwin E, Pradeepa V (2016) Toxicity of Alangium salvifolium Wang chemical constituents against the tobacco cutworm Spodoptera litura Fab. Pest Biochem Physiol 126:92–101CrossRefGoogle Scholar
  36. Senthil-Nathan S (2013) Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against lepidopteran insects. Front Physiol 4:1–17CrossRefGoogle Scholar
  37. Senthil-Nathan S (2015) A review of bio pesticides and their mode of action against insect pests. In: Environmental sustainability—role of green technologies. Springer-Verlag, pp 49–63Google Scholar
  38. Senthil-Nathan S, Choi M, Seo H, Paik C, Kalaivani K (2009) Toxicity and behavioral effect of 3β, 24,25-trihydroxycycloartane and beddomei lactone on the rice leaffolder Cnaphalocrocis medinalis (Guene’e) (Lepidoptera: Pyralidae). Ecotoxicol Environ Saf 72:1156–1162CrossRefGoogle Scholar
  39. Senthil-Nathan S, Choi MY, Paik CH, Seo HY (2007) Food consumption, utilization, and detoxification enzyme activity of the rice leaffolder larvae after treatment with Dysoxylum triterpenes. Pest. Biochem Physiol 88:260–267Google Scholar
  40. Senthil-Nathan S, Choi MY, Seo HY, Paik CH, Kalaivani K, Kim JD (2008) Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown plant hopper Nilaparvata lugens (Stal). Ecotoxicol Environ Saf 70:244–250CrossRefGoogle Scholar
  41. Senthil-Nathan S, Kalaivani K (2005) Efficacy of nucleopolyhedrovirus and azadirachtinon Spodoptera litura fabricius (Lepidoptera: Noctuidae). Biol Control 34:93–98CrossRefGoogle Scholar
  42. Senthil-Nathan S, Kalaivani K, Murugan K (2005) Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 96:47–55CrossRefGoogle Scholar
  43. Senthil-Nathan S, Kalaivani K, Sehoon K (2006) Effects of Dysoxylum malabaricum bedd. (Meliaceae) extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 97:2077–2083CrossRefGoogle Scholar
  44. Sivagnaname N, Kalyanasundaram M (2004) Laboratory evaluation of Methanolic extract of Atlantia monophylla (family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz, Rio de Janeiro 99(1):115–118CrossRefGoogle Scholar
  45. Somboon P, Prapanthadara L, Suwonkerd W (2003) Insecticide susceptibility tests of Anopheles minimuss.L., Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand. Southeast Asian J Trop Med Public Health 34:87–93Google Scholar
  46. Srikanth K, Muregesan T, Anil-Kumar C, Suba V, Das AK, Sinha S, Arunachalam G, Manikandan L (2002) Effect of Trichodesma indicum extract on cough reflex induced by Sulphur dioxide in mice. Phytomed 9:75–77CrossRefGoogle Scholar
  47. Stenrod M, Almvik M, Eklo OM, Gimsing AL, Holten R, Künnis-Beres K, Larsbo M, Putlies L, Siimes K, Turka I, Uusi-Kämppä J (2016) Pesticide regulatory risk assessment, monitoring, and fate studies in the northern zone: recommendations from a Nordic-Baltic workshop. Environ Sci Pollut Res 23:15779–15788CrossRefGoogle Scholar
  48. Thanigaivel A, Chandrasekaran R, Revathi K, Nisha S, Sathish-Narayanan S, Kirubakaran SA, Senthil-Nathan S (2012) Larvicidal efficacy of Adhatoda vasica (L.) Nees against the Bancroftian filariasis vector Culex quinquefasciatus Say and dengue vector Aedes aegypti L. in in vitro condition. Parasitol Res 110:1993–1999CrossRefGoogle Scholar
  49. Thanigaivel A, Senthil-Nathan S, Vasantha-Srinivasan P, Edwin E, Ponsankar A, Selin-Rani S, Pradeepa V, Chellappandian M, Kalaivani K, Abdel-Megeed A, Narayanan R, Murugan K (2017b) Chemicals isolated from Justicia adhatoda Linn reduce fitness of the mosquito, Aedes aegypti L. Arch Insect Biochem Physiol 00:e21384CrossRefGoogle Scholar
  50. Thanigaivel A, Vasantha-Srinivasan P, Senthil-Nathan S, Edwin E, Ponsankar A, Chellappandian M, Selin-Rani S, Lija-Escaline J, Kalaivani K (2017a) Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects. Ecotoxicol Environ Saf 137:210–217CrossRefGoogle Scholar
  51. Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Edwin E, Selin-Rani S, Chellappandian M, Pradeepa V, Lija-Escaline J, Kalaivani K (2017b) Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicol Environ Saf 139:439–446CrossRefGoogle Scholar
  52. Vasantha-Srinivasan P, Thanigaivel A, Edwin E, Ponsankar A, Senthil-Nathan S, Selin-Rani S, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA (2017a) Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Ecotoxicol Environ Saf 139:439–446CrossRefGoogle Scholar
  53. World Health Organization (2009) Guidelines for efficacy testing of mosquito repellents for human skins, WHO. Gevena 4–18(WHO/CDS/NTD/WHOPES/2009.4)Google Scholar
  54. Zibaee A, Bandani AR (2010) Effects of Artemisia annua L. (Asteracea) on the digestive enzymatic profiles and the cellular immune reactions of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauveria bassiana. Bull Entomol Res 100:185–196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Muthiah Chellappandian
    • 1
  • Sengottayan Senthil-Nathan
    • 1
    Email author
  • Prabhakaran Vasantha-Srinivasan
    • 1
    • 2
  • Sengodan Karthi
    • 1
  • Annamalai Thanigaivel
    • 1
  • Kandaswamy Kalaivani
    • 3
  • Haridoss Sivanesh
    • 1
  • Vethamonickam Stanley-Raja
    • 1
  • Kanagaraj Muthu-Pandian Chanthini
    • 1
  • Narayanan Shyam-Sundar
    • 1
  1. 1.Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental SciencesManonmaniam Sundaranar UniversityTirunelveliIndia
  2. 2.Department of BiotechnologySt. Peter’s Institute of Higher Education and ResearchChennaiIndia
  3. 3.Post Graduate and Research Centre, Department of ZoologySri Parasakthi College for WomenTirunelveliIndia

Personalised recommendations