Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 13, pp 13560–13579 | Cite as

Monte Carlo fingerprinting of the terrestrial sources of different particle size fractions of coastal sediment deposits using geochemical tracers: some lessons for the user community

  • Hamid GholamiEmail author
  • Ebrahim Jafari TakhtiNajad
  • Adrian L. CollinsEmail author
  • Aboalhasan Fathabadi
Research Article

Abstract

A sediment source fingerprinting method, including a Monte Carlo simulation framework, was used to quantify the contributions of terrestrial sources of fine- (< 63 μm) and coarse-grained (63–500 μm) sediments sampled from three categories of coastal sediment deposits in the Jagin catchment, south-east of Jask, Hormozgan province, southern Iran: coastal dunes (CD), terrestrial sand dunes or onshore sediments (TSD), and marine or offshore sediments (MD). Forty-nine geochemical properties were measured in the two size fractions and a three-stage statistical process consisting of a conservation test, the Kruskal–Wallis H test, and stepwise discriminant function analysis (DFA) was applied to select final composite fingerprints for terrestrial source discrimination. Based on the statistical tests, four final fingerprints comprising Be, Ni, K and Cu and seven final fingerprints consisting Cu, Th, Be, Al, La, Mg and Fe were selected for discriminating terrestrial sources of the coastal fine- and coarse-grained sediments, respectively. Two geological spatial sources, including Quaternary (clay flat, high and low level fans and valley terraces) and Palaeocene age deposits, were identified as the main terrestrial sources of the fine-grained sediment sampled from the coastal deposits. A geological spatial source consisting of sandstone with siltstone, mudstone and minor conglomerate (Palaeocene age deposits) was identified as the main terrestrial source for coarse-grained sediment sampled from the coastal deposits.

Keywords

Coastal sediment fingerprinting Monte Carlo simulation framework Uncertainty Iran 

Notes

Acknowledgements

The authors would like to thank the Faculty of Agriculture and Natural Resources, University of Hormozgan, Iran for supporting this joint research project.

Funding information

Rothamsted Research receives strategic funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC), and the input to this work by ALC was funded by grant BBS/E/C/000I0330.

References

  1. Abban B, Papanicolaou AN, Cowles MK, Wilson CG, Abaci O, Wacha K, Schilling K, Schnobelen D (2016) An enhanced Bayesian fingerprinting framework for studying sediment source dynamics in intensively managed landscapes. Water Resour Res 52:4646–4673.  https://doi.org/10.1002/2015WR018030 CrossRefGoogle Scholar
  2. Ahmady-Birgani H, Agahi E, Ahmadi SJ, Erfanian M (2018) Sediment source fingerprinting of the Lake Urmia sand dunes. Sci Rep 8(206):1–15.  https://doi.org/10.1038/s41598-017-18027-0 CrossRefGoogle Scholar
  3. Bernard PL, Foxgrover AC, Elias EPL, Erikson LH, Hein JR, McGann M, Mizell K, Rosenbauer RJ, Swarzenski PW, Takesue RK, Wong FL, Woodrow DL (2013) Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System. Mar Geol 345:181–206.  https://doi.org/10.1016/j.margeo.2013.08.007 CrossRefGoogle Scholar
  4. Bottrill LJ, Walling DE, Leeks GJL (2000) Using recent overbank deposits to investigate contemporary sediment sources in larger river basins. In: Foster IDL (ed) Tracers in geomorphology. Wiley, Chichester, pp 369–387Google Scholar
  5. Brosinsky A, Foerster S, Segl K, Lopez-Tarazan JA, Pique G, Bronstert A (2014) Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information. J Soils Sediments.  https://doi.org/10.1007/s11368-014-092-z
  6. Carvalho C, Anjos RM, Veiga R, Macario K (2013) Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments. J Environ Radioact 102:185–192.  https://doi.org/10.1016/j.jenvrad.2010.11.011 CrossRefGoogle Scholar
  7. Cashman MJ, Gellis A, Sanisaca LG, Noe GB, Cogliandro V, Baker A (2018) Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed. River Res Applic 1–13Google Scholar
  8. Chen F, Fang N, Shi Z (2016) Using biomarkers as fingerprint properties to identify sediment sources in a small catchment. Sci Total Environ 557-558:123–133CrossRefGoogle Scholar
  9. Collins AL, Walling DE (2007) Sources of fine sediment recovered from the channel bed of lowland groundwater-fed catchments in the UK. Geomorphology 88:120–138.  https://doi.org/10.1016/j.geomorph.2006.10.018 CrossRefGoogle Scholar
  10. Collins AL, Walling DE, Leeks GJL (1997) Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type. Geogr Ann 79:239–254CrossRefGoogle Scholar
  11. Collins AL, Zhang Y, Walling DE, Grenfell SE, Smith P (2010) Tracing sediment loss from eroding farm tracks using a geochemical fingerprinting procedure combining local and genetic algorithm optimisation. Sci Total Environ 408(22):5461–5471.  https://doi.org/10.1016/j.scitotenv.2010.07.066 CrossRefGoogle Scholar
  12. Collins AL, Zhang Y, McChesney D, Walling DE, Haley SM, Smith P (2012) Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Sci Total Environ 414:301–317.  https://doi.org/10.1016/j.scitotenv.2011.10.062 CrossRefGoogle Scholar
  13. Collins AL, Zhang YS, Duethmann D, Walling DE, Black KS (2013a) Using a novel tracing-tracking framework to source fine-grained sediment loss to watercourses at sub-catchment scale. Hydrol Process 27(6):959–974.  https://doi.org/10.1002/hyp.9652 CrossRefGoogle Scholar
  14. Collins AL, Zhang Y, Hickinbotham R, Bailey G, Darlington S, Grenfell SE, Evans R, Blackwell M (2013b) Contemporary fine-grained bed sediment sources across the River Wensum Demonstration Test Catchment, UK. Hydrol Process 27:857–884CrossRefGoogle Scholar
  15. Collins AL, Williams LJ, Zhang YS, Marius M, Dungait JAJ, Smallman DJ, … Naden PS (2014) Sources of sediment-bound organic matter infiltrating spawning gravels during the incubation and emergenc e life stages of salmonids. Agric Ecosyst Environ 196:76–93.  https://doi.org/10.1016/j.agee.2014.06.018
  16. Collins AL, Pulley S, Foster IDL, Gellis A, Porto P, Horowitz AJ (2017) Sediment source fingerprinting as an aid to catchment management: a review of the current state of knowledge and a methodological decision-tree for end-users. J Environ Manag 194:86–108.  https://doi.org/10.1016/j.jenvman.2016.09.075 CrossRefGoogle Scholar
  17. Cooper RJ, Krueger T (2017) An extended Bayesian sediment fingerprinting mixing model for the full Bayes treatment of geochemical uncertainties. Hydrol Process 31:1900–1912.  https://doi.org/10.1002/hyp.11154 CrossRefGoogle Scholar
  18. Cooper RJ, Krueger T, Hiscock KM, Rawlins BG (2014) Sensitivity of fluvial sediment source apportionment to mixing model assumptions: a Bayesian model comparison. Water Resour Res 50:9031–9047.  https://doi.org/10.1002/2014WR016194 CrossRefGoogle Scholar
  19. Cooper RJ, Krueger T, Hiscock KM, Rawlins BG (2015) High-temporal resolution fluvial sediment source fingerprinting with uncertainty: a Bayesian approach. Earth Surf Process Landf 40(1):78–92.  https://doi.org/10.1002/esp.3621 CrossRefGoogle Scholar
  20. Dahmardeh Behrooz R, Gholami H, Telfer MW, Jansen JD, Fathabadi A (2019) Uisng GLUE to pull apart the provenance of atmospheric dust. Aeolian Res 37:1–13.  https://doi.org/10.1016/j.aeolia.2018.12.001 CrossRefGoogle Scholar
  21. Du S, Wu Y, Tan L (2018) Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau. Aeolian Res 32:60–70.  https://doi.org/10.1016/j.aerolia.2018.01.005 CrossRefGoogle Scholar
  22. Evrard O, Laceby PJ, Huon S, Lefevre I, Sengtaheuanghoung O, Ribolzi O (2016) Combining multiple fallout radionuclides (137Cs, 7Be, 210Pbex) to investigate temporal sediment source dynamics in tropical ephemeral river systems. J Soils Sediments 16:1130–1144CrossRefGoogle Scholar
  23. Franks SW, Rowan JS (2000) Multi-parameter fingerprinting of sediment sources: uncertainty estimation and tracer selection. Comput Methods Water Resour 13:1067–1074Google Scholar
  24. Franz C, Makeschin F, Weiß H, Lorz C (2014) Sediments in urban river basins: identification of sediment sources within the Lago Paranoá Catchment, Brasilia DF, Brazil—using the fingerprint approach. Sci Total Environ 466-467:513–523.  https://doi.org/10.1016/j.scitotenv.2013.07.056 CrossRefGoogle Scholar
  25. Gellis AC, Noe GB (2013) Sediment source analysis in the Linganore Creek watershed, Maryland, USA, using the sediment fingerprinting approach: 2008 to 2010. J Soils Sediments 13(10):1735–1753.  https://doi.org/10.1007/s11368-013-0771-6 CrossRefGoogle Scholar
  26. Gholami H, Middleton N, NazariSamani AA, Wasson R (2017a) Determining contribution of sand dune potential sources using radionuclides, trace and major elements in central Iran. Arabian J Geosci 10:163.  https://doi.org/10.1007/s12517-017-2917-0 CrossRefGoogle Scholar
  27. Gholami H, Telfer MW, Blake WH, Fathabadi A (2017b) Aeolian sediment fingerprinting using a Bayesian mixing model. Earth Surf Process Landf 42:2365–2376.  https://doi.org/10.1002/esp.4189 CrossRefGoogle Scholar
  28. Habibi S, Gholami H, Fathabadi A, Jansen JD (2019) Fingerprinting sources of reservoir sediment via two modelling approaches. Sci Total Environ 663:78–96.  https://doi.org/10.1016/j.scitotenv.2019.01.327 CrossRefGoogle Scholar
  29. Haddadchi A, Ryder D, Evrard O, Olley J (2013) Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models. Int J Sediment Res 28:560–578.  https://doi.org/10.1016/S1001-6279(14)60013-5 CrossRefGoogle Scholar
  30. Haddadchi A, Olley J, Laceby JP (2014) Accuracy of mixing models in predicting sediment source contributions. Sci Total Environ 497-498:139–152.  https://doi.org/10.1016/j.scitotenv.2014.07.105 CrossRefGoogle Scholar
  31. Hein JR, Mizell K, Barnard PL (2013) Sand sources and transport pathways for the San Francisco Bay coastal system, based on X-ray diffraction mineralogy. Mar Geol 345:154–169.  https://doi.org/10.1016/j.margeo.2013.04.003 CrossRefGoogle Scholar
  32. Hughes AO, Olley JM, Croke JC, McKergow LA (2009) Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia. Geomorphology 104:262–275CrossRefGoogle Scholar
  33. Kairyte M, Stevens RL (2009) Quantitative provenance of silt and clay within sandy deposits of the Lithuanian coastal zone (Baltic Sea). Mar Geol 257:87–93.  https://doi.org/10.1016/j.margeo.2008.11.001 CrossRefGoogle Scholar
  34. Koiter AJ, Lobb DA, Owens PN, Petticrew EL, Tiessen KHD, Li S (2013) Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the Canadian prairies using sediment source fingerprinting. J Soils Sediments 13(10):1676–1691.  https://doi.org/10.1007/s11368-013-0762-7 CrossRefGoogle Scholar
  35. Lahijani H, Tavakoli V (2012) Identifying provenance of South Caspian coastal sediments using mineral distribution pattern. Quat Int 261:128–137.  https://doi.org/10.1016/j.quaint.2011.04.021 CrossRefGoogle Scholar
  36. Le Gall M, Evrard O, Foucher A, Laceby JP, Salvador-Blanes S, Thill O, Dapoigny A, Lefèvre I, Cerdan O, Ayrault S (2016) Quantifying sediment sources in a lowland agricultural catchment pond using 137 Cs activities and radiogenic 87Sr/86Sr ratios. Sci Total Environ 566–567:968–980.  https://doi.org/10.1016/j.scitotenv.2016.05.093 CrossRefGoogle Scholar
  37. Liu BL, Niu QH, Qu JJ, Zu RP (2016a) Quantifying the provenance of aeolian sediments using multiple composite fingerprints. Aeolian Res 22:117–122.  https://doi.org/10.1016/j.aeolia.2016.08.002 CrossRefGoogle Scholar
  38. Liu B, Storm DE, Zhang XJ, Cao W, Duan X (2016b) A new method for fingerprinting sediment source contributions using distances from discriminant function analysis. Catena 147:32–39.  https://doi.org/10.1016/j.catena.2016.06.039 CrossRefGoogle Scholar
  39. Manjoro M, Rowntree K, Kakembo V, Foster I, Collins AL (2016) Use of sediment source fingerprinting to assess the role of subsurface erosion in the supply of fine sediment in a degraded catchment in the Eastern Cape, South Africa. J Environ Manag 1–5.  https://doi.org/10.1016/j.jenvman.2016.07.019
  40. Martínez-Carreras N, Udelhoven T, Krein A, Gallart F, Iffly JF, Ziebel J, Hoffmann L, Pfister L, Walling DE (2010) The use of sediment colour measured by diffuse reflectance spectrometry to determine sediment sources: application to the Attert River Catchment (Luxembourg). J Hydrol 382(1–4):49–63.  https://doi.org/10.1016/j.jhydrol.2009.12.017 CrossRefGoogle Scholar
  41. Morshedi Nodej T, Rezazadeh M (2018) The spatial distribution of critical wind erosion centers according to the dust event in Hormozgan province (south of Iran). Catena 167:340–352.  https://doi.org/10.1016/j.catena.2018.05.008 CrossRefGoogle Scholar
  42. Muhs DR (2017) Evaluation of simple geochemical indicators of Aeolian sand provenance: Late Quaternary dune fields of North America revisited. Quat Sci Rev 171:260–296.  https://doi.org/10.1016/j.quascirev.2017.07.007 CrossRefGoogle Scholar
  43. Muhs DR, Prospero JM, Baddock MC, Gill TE (2014) Identifying sources of aeolian mineral dust: present and past, Mineral Dust (Book chapter). Geosci Environ Change Sci Cent 51–74.  https://doi.org/10.1007/978-94-017-8978-3
  44. Muhs DR, Lancaster N, Skipp GL (2017) A complex origin for the Kelso Dunes, Mojave National Preserve, California, USA: a case study using a simple geochemical method with global applications. Aeolian Res 276:222–243.  https://doi.org/10.1016/j.geomorph.2016.10.002 CrossRefGoogle Scholar
  45. Mukundan R, Walling DE, Gellis AC, Slattery MC, Radcliffe DE (2012) Sediment source fingerprinting: transforming from a research tool to a management tool. J Am Water Resour Assoc 48(6):1241–1257.  https://doi.org/10.1111/j.1752-1688.2012.00685.x CrossRefGoogle Scholar
  46. Nosrati K, Govers G, Ahmadi H, Sharifi F, Amoozegar MA, Merckx R, Vanmaercke M (2011) An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints. Int J Sediment Res 26:136–151CrossRefGoogle Scholar
  47. Nosrati K, Collins AL, Madankan M (2018) Fingerprinting sub-basin spatial sediment sources using different multivariate statistical techniques and the modified MixSIR model. Catena 164:32–43CrossRefGoogle Scholar
  48. Owens PN, Walling DE, Leeks GJL (1999) Use of floodplain sediment cores to investigate recent historical changes in overbank sedimentation rates and sediment sources in the catchment of the River Ouse, Yorkshire, UK. Catena 36:21–47CrossRefGoogle Scholar
  49. Owens PN, Blake WH, Gaspar L, Gateuille D, Koiter AJ, Lobb DA, Petticrew EL, Reiffarth DG, Smith HG, Woodward JC (2016) Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth Sci Rev 162:1–23.  https://doi.org/10.1016/j.earscirev.2016.08.012 CrossRefGoogle Scholar
  50. Pham DT, Gouramanis C, Switzer AD, Rubin CM, Jones BG, Jankaew K, Carr PF (2018) Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: insights into the provenance of coastal hazard deposits. Mar Geol 396:79–99.  https://doi.org/10.1016/j.margeo.2018.01.006 CrossRefGoogle Scholar
  51. Prizomwala SP, Bhatt N, Basavaiah N (2014) Provenance discrimination and source-to-sink studies from a dryland fluvial regime: an example from Kachchh, western India. Int J Sediment Res 29:99–109CrossRefGoogle Scholar
  52. Pulley S, Collins AL (2018) Tracing catchment fine sediment sources using the new SIFT (SedIment Fingerprinting Tool) open source software. Sci Total Environ 635:838–858CrossRefGoogle Scholar
  53. Pulley S, Foster I, Collins AL (2017) The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs. J Environ Manag 194:16–26CrossRefGoogle Scholar
  54. Rao W, Tan H, Jiang S, Chen J (2011) Trace element and REE geochemistry of fine- and coarse-grained sands in the Ordos deserts and links with sediments in surrounding areas. Chem Erde- Geochem 71(2):155–170.  https://doi.org/10.1016/j.chemer.2011.02.003 CrossRefGoogle Scholar
  55. Rao W, Mao C, Wang Y, Su J, Balsam W, Ji J (2015) Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China. Mar Geol 359:35–49.  https://doi.org/10.1016/j.margeo.2014.11.007 CrossRefGoogle Scholar
  56. Rao W, Mao C, Wang Y, Huang H, Ji J (2017) Using Nd-Sr isotopes and rare earth elements to study sediment provenance of the modern radial sand ridges in the southwesternYellow Sea. Appl Geochem 81:23–35.  https://doi.org/10.1016/j.apgeochem.2017.03.011 CrossRefGoogle Scholar
  57. Rosenbauer RJ, Foxgrover AC, Hein JR, Swarzenski PW (2013) A Sr–Nd isotopic study of sand-sized sediment provenance and transport for the San Francisco Bay coastal system. Mar Geol 345:143–153.  https://doi.org/10.1016/j.margeo.2013.01.002 CrossRefGoogle Scholar
  58. Russell MA, Walling DE, Hodgkinson RA (2001) Suspended sediment sources in two small lowland agricultural catchments in the UK. J Hydrol 252(1–4):1–24.  https://doi.org/10.1016/S0022-1694(01)00388-2 CrossRefGoogle Scholar
  59. Saitoh Y, Tamura T, Nakano T (2017) Geochemical constraints on the sources of beach sand, southern Sendai Bay, northeast Japan. Mar Geol 387:97–107.  https://doi.org/10.1016/j.margeo.2017.04.004 CrossRefGoogle Scholar
  60. Stone M, Collins AL, Silins U, Emelko MB, Zhang YS (2014) The use of composite fingerprints to quantify sediment sources in a wildfire impacted landscape, Alberta, Canada. Sci Total Environ 473-474:642–650.  https://doi.org/10.1016/j.scitotenv.2013.12.052 CrossRefGoogle Scholar
  61. Tiecher T, Minella JPG, Evrard O, Caner L, Merten GH, Capoane V, Didone EJ, dos Santos DR (2018) Fingerprinting sediment sources in a large agricultural catchment under no-tillage in southern Brazil (Conceição River). Land Degrad Dev 29(4):939–951CrossRefGoogle Scholar
  62. Voli MT, Wegmann KW, Bohnenstiehl DR, Leithold E, Osburn CL, Polyakov V (2013) Fingerprinting the sources of suspended sediment delivery to a large municipal drinking water reservoir: Falls Lake, Neuse River, North Carolina, USA. J Soils Sediments 13(10):1692–1707.  https://doi.org/10.1007/s11368-013-0758-3 CrossRefGoogle Scholar
  63. Walden J, Slattery MC, Burt TP (1997) Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis. J Hydrol 202:353–372CrossRefGoogle Scholar
  64. Walling DE (2013) The evolution of sediment source fingerprinting investigations in fluvial systems. J Soils Sediments 13(10):1658–1675.  https://doi.org/10.1007/s11368-013-0767-2 CrossRefGoogle Scholar
  65. Walling DE, Owens PN, Leeks GJL (1999) Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrol Process 13:955–975.  https://doi.org/10.1002/(SICI)1099-1085(199905)13:7<955::AID-HYP784>3.0.CO;2-G CrossRefGoogle Scholar
  66. Wang G, Li J, Ravi S, Scott Van Pelt R, Costa PJM, Dukes D (2017) Tracer techniques in aeolian research: approaches, applications, and challenges. Earth-Sci Rev 170:1–16.  https://doi.org/10.1016/j.earscirev.2017.05.001 CrossRefGoogle Scholar
  67. Weltje G (2012) Quantitative models of sediment generation and provenance: state of the art and future developments. Sediment Geol 280:4–20CrossRefGoogle Scholar
  68. Wilkinson S, Hancock G, Bartley R, Hawdon A, Keen R (2013) Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia. Agric Ecosyst Environ 180:90–102.  https://doi.org/10.1016/j.agee.2012.02.002 CrossRefGoogle Scholar
  69. Wong FL, Woodrow DL, McGann M (2013) Heavy mineral analysis for assessing the provenance of sandy sediment in the San Francisco Bay Coastal System. Mar Geol 345:170–180.  https://doi.org/10.1016/j.margeo.2013.05.012 CrossRefGoogle Scholar
  70. Zhang J, Yang M, Zhang F, Zhang W, Zhao T, Li Y (2017) Fingerprinting sediment sources after an extreme rainstorm event in a small catchment on the Loess Plateau, PR China. Land Degrad Dev 28:2527–2539CrossRefGoogle Scholar
  71. Zular A, Sawakuchi AO, Guedes CCF, Giannini PCF (2015) Attaining provenance proxies from OSL and TL sensitivities: coupling with grain size and heavy minerals data from southern Brazilian coastal sediments. Radiat Meas 81:39–45.  https://doi.org/10.1016/j.radmeas.2015.04.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Natural Resources EngineeringUniversity of HormozganBandar-AbbasIran
  2. 2.Sustainable Agriculture Sciences DepartmentRothamsted ResearchOkehamptonUK
  3. 3.Department of Range and Watershed ManagementUniversity of Gonbad-e-KavoosGonbad-e-KavoosIran

Personalised recommendations