Selenium attenuates apoptosis and p-AMPK expressions in fluoride-induced NRK-52E cells

  • Jiping Gao
  • Yu Wang
  • Guoqiang Xu
  • Jianing Wei
  • Kai Chang
  • Xiaolin Tian
  • Maolin Liu
  • Xiaoyan Yan
  • Meijun Huo
  • Guohua SongEmail author
Research Article


Fluoride is widely distributed in the environment, and excessive fluoride intake can induce cytotoxicity, DNA damage, and cell cycle changes in many tissues and organs, including the kidney. Accumulating evidence demonstrates that selenium (Se) administration ameliorates sodium fluoride (NaF)-induced kidney damage. However, the potentially beneficial effects of Se against NaF-induced cytotoxicity of the kidney and the underlying molecular mechanisms of this protection are not fully understood. At present, in this study, the normal rat kidney cell (NRK-52E) was used to investigate the potentially protective mechanism of Se against NaF-induced apoptosis, by using the methods of pathology, colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and Western blot. The experiment was designed with a control group, two NaF-treated groups (NaF, 5, 20 mg/L), two sodium selenite-treated groups (Na2SeO3, 17.1, 34.2 μg/L), and four Se + NaF-treated groups (Na2SeO3, 17.1, 34.2 μg/L; NaF, 5, 20 mg/L). The results indicate that selenium can attenuate apoptosis and AMPK phosphorylation in the NRK-52E cell induced with fluoride. These results imply that selenium is capable to modulate fluoride-induced NRK-52E cell apoptosis via regulating the expression levels of the proteins involved in mitochondrial pathway and changes in p-AMPK expressions may also be a key process in preventing fluorosis.


Fluoride Selenium NRK-52E cells Apoptosis AMPK Mitochondrial pathway 



This work was financed by grants from the China National Natural Science Foundation (No. 31240009), the Special Funds for Experimental Animal Technologies in Shanxi Province of China (No. 2012K02), and the Shanxi Scholarship Council of China (Grant No. 2016-056).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Agarwal C, Singh RP, Agarwal R (2002) Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis 23:1869–1876CrossRefGoogle Scholar
  2. Alhusaini AM, Faddah LM, El Orabi NF, Hasan IH (2018) Role of some natural antioxidants in the modulation of some proteins expressions against sodium fluoride-induced renal injury. Biomed Res Int 2018:1–9CrossRefGoogle Scholar
  3. Ameeramja J, Panneerselvam L, Govindarajan V, Jeyachandran S, Baskaralingam V, Perumal E (2016) Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. J Hazard Mater 301:554–565CrossRefGoogle Scholar
  4. Anuradha CD, Kanno S, Hirano S (2001) Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cell. Free Radic Biol Med 31:367–373CrossRefGoogle Scholar
  5. Bai C, Chen T, Cui Y, Gong T, Peng X, Cui HM (2010) Effect of high fluorine on the cell cycle and apoptosis of renal cells in chickens. Biol Trace Elem Res 138:173–180CrossRefGoogle Scholar
  6. Błaszczyk I, Grucka-Mamczar E, Kasperczyk S, Birkner E (2010) Influence of methionine upon the activity of antioxidative enzymes in the kidney of rats exposed to sodium fluoride. Biol Trace Elem Res 133:60–70CrossRefGoogle Scholar
  7. Cao J, Chen J, Xie L, Wang J, Feng C, Song J (2015) Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway. Aquat Toxicol 167:180–190CrossRefGoogle Scholar
  8. Cao J, Chen J, Wang J, Jia R, Xue W, Luo Y, Gan X (2013) Effects of fluoride on liver apoptosis and Bcl-2, Bax protein expression in freshwater teleost, Cyprinus carpio. Chemosphere 91:1203–1212CrossRefGoogle Scholar
  9. Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S (2011) Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Arch Toxicol 85:327–335CrossRefGoogle Scholar
  10. Dhar V, Bhatnagar M (2009) Physiology and toxicity of fluoride. Indian J Dent Res 20:350–355CrossRefGoogle Scholar
  11. Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13:7254–7263CrossRefGoogle Scholar
  12. Feng Z, Xiaoxing L, Dehua Z (2002) Cell apoptosis signal transduction and regulation. Chin Heart J 14:535–537 (in Chinese)Google Scholar
  13. Gao Y, Liang C, Zhang J, Ma J, Wang J, Niu R, Chiranjeevi T, Wang YW, Wang JD (2018) Combination of fluoride and SO2 induce DNA damage and morphological alterations in male rat kidney. Cell Physiol Biochem 50:734–744CrossRefGoogle Scholar
  14. Ganta KK, Mandal A, Chaubey B (2017) Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol 33:1–14CrossRefGoogle Scholar
  15. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 104:144–164CrossRefGoogle Scholar
  16. Handy DE, Loscalzo J (2012) Redox regulation of mitochondrial function. Antioxid Redox Signal 16:1323–1367CrossRefGoogle Scholar
  17. Hardie DG (2011) AMPK and autophagy get connected. EMBO J 30:634–635CrossRefGoogle Scholar
  18. Hart PC, Mao M, de Abreu AL, Ansenberger-Fricano K, Ekoue DN, Ganini D, Kajdacsy-Balla A, Diamond AM, Minshall RD, Consolaro ME, Santos JH, Bonini MG (2015) MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun 6:6053CrossRefGoogle Scholar
  19. Han B, Yoon SS, Wu PF, Han HR, Liang LC (2006) Role of selenium in alteration of erythrocyte parameters in bovine fluorosis. Asian Australas J Anim Sci 19:865–871CrossRefGoogle Scholar
  20. He Y, Mo Q, Luo B, Qiao Y, Xu R, Zuo Z, Deng J, Nong X, Peng G, He W, Wei Y, Hu Y (2016) Induction of apoptosis and autophagy via mitochondria- and PI3K/Akt/mTOR-mediated pathways by E. adenophorum in hepatocytes of saanen goat. Oncotarget 7:54537–54548Google Scholar
  21. Hinchy EC, Gruszczyk AV, Willows R, Navaratnam N, Hall AR, Bates G, Bright TP, Krieg T, Carling D, Murphy MP (2018) Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem 293:17208–17217CrossRefGoogle Scholar
  22. Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S (2012) Fluoride in drinking water and defluoridation of water. Chem Rev 112:2454–2466CrossRefGoogle Scholar
  23. Jiménez-Córdova MI, Cárdenas-González M, Aguilar-Madrid G, Sanchez-Peña LC, Barr-Hernández Á, Domínguez-Guerrero IA, González-Horta C, Barbier OC, Del Razo LM (2018) Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels. Toxicol Appl Pharmacol 352:97–106CrossRefGoogle Scholar
  24. Kido T, Tsunoda M, Sugaya C, Hano H, Yanagisawa H (2017) Fluoride potentiates tubulointerstitial nephropathy caused by unilateral ureteral obstruction. Toxicology 392:106–118CrossRefGoogle Scholar
  25. Kobayashi CA, Leite AL, Silva TL, Santos LD, Nogueira FC, Oliveira RC, Palma MS, Domont GB, Buzalaf MA (2009) Proteomic analysis of kidney in rats chronically exposed to fluoride. Chem Biol Interact 180:305–311CrossRefGoogle Scholar
  26. Li DT, Ma HR, Ye YQ, Ji CY, Tang XH, Ouyang D, Chen J, Li YG, Ma YJ (2014) Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway. Environ Toxicol Pharmacol 38:163–171CrossRefGoogle Scholar
  27. Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y, Fang J, Zuo ZC, Deng JL, Li YL, Wang X, Zhao L (2017a) Sodium fluoride induces renal inflammatory responses by activating NF-κB signaling pathway and reducing anti-inflammatory cytokine expression in mice. Oncotarget 8:80192–80207Google Scholar
  28. Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y, Fang J, Zuo ZC, Deng JL, Li YL, Wang X, Zhao L (2017b) Histopathological findings of renal tissue induced by oxidative stress due to different concentrations of fluoride. Oncotarget 8:50430–50446Google Scholar
  29. Luo Q, Guo H, Kuang P, Cui H, Deng H, Liu H, Lu Y, Wei Q, Chen L, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Sodium fluoride arrests renal G2/M phase cell-cycle progression by activating ATM-Chk2-P53/Cdc25C signaling pathway in mice. Cell Physiol Biochem 51(5):2421–2433CrossRefGoogle Scholar
  30. Miao K, Zhang L, Yang S, Qian W, Zhang Z (2013) Intervention of selenium on apoptosis and Fas/FasL expressions in the liver of fluoride-exposed rats. Environ Toxicol Pharmacol 36:913–920CrossRefGoogle Scholar
  31. Mandinic Z, Curcic M, Antonijevic B, Lekic CP, Carevic M (2009) Relationship between fluoride intake in Serbian children living in two areas with different natural levels of fluorides and occurrence of dental fluorosis. Food Chem Toxicol 47:1080–1084CrossRefGoogle Scholar
  32. Migita T, Okabe S, Ikeda K, Igarashi S, Sugawara S, Tomida A, Taguchi R, Soga T, Seimiya H (2013) Inhibition of ATP citrate Lyase induces an anticancer effect via reactive oxygen species: AMPK as a predictive biomarker for therapeutic impact. Am J Pathol 182:1800–1810CrossRefGoogle Scholar
  33. Naik E, Dixit VM (2011) Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 208:417–420CrossRefGoogle Scholar
  34. Park JB, Lee MS, Cha EY, Lee JS, Sul JY, Song IS, Kim JY (2012) Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol Pharm Bull 35:1614–1620CrossRefGoogle Scholar
  35. Perera T, Ranasinghe S, Alles N, Waduge R (2018) Effect of fluoride on major organs with the different time of exposure in rats. Environ Health Prev Med 23:17–19CrossRefGoogle Scholar
  36. Quadri JA, Sarwar S, Sinha A, Kalaivani M, Dinda AK, Bagga A, Roy TS, Das TK, Shariff A (2018) Fluoride-associated ultrastructural changes and apoptosis in human renal tubule: a pilot study. Hum Exp Toxicol 37:1–8CrossRefGoogle Scholar
  37. Reddy KP, Sailaja G, Krishnaiah C (2009) Protective effects of selenium on fluoride induced alterations in certain enzymes in brain of mice. J Environ Biol 30:859–864Google Scholar
  38. Reznick RM, Shulman GI (2006) The role of AMP-activated protein kinase in mitochondrial biogenesis: AMPK in mitochondrial biogenesis. J Physiol 574:33–39CrossRefGoogle Scholar
  39. Roach PJ (2011) AMPK→ULK1→autophagy. Mol Cell Biol 31:3082–3084CrossRefGoogle Scholar
  40. Sayanthooran S, Gunerathne L, Abeysekera TDJ, Magana-Arachchi DN (2018) Transcriptome analysis supports viral infection and fluoride toxicity as contributors to chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. Int Urol Nephrol 50:1667–1677CrossRefGoogle Scholar
  41. Song C, Fu BB, Zhang JC, Zhao JM, Yuan MK, Peng W, Zhang Y, Wu HB (2017) Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway. Scientific Reports (Nature Publisher Group) 7:1–15CrossRefGoogle Scholar
  42. Song GH, Gao JP, Wang CF, Chen CY, Yan XY, Guo M, Wang Y, Huang FB (2014a) Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage. J Physiol Biochem 70:857–868CrossRefGoogle Scholar
  43. Song G, Wang RL, Chen ZY, Zhang B, Wang HL, Liu ML, Gao JP, Yan XY (2014b) Toxic effects of sodium fluoride on cell proliferation and apoptosis of Leydig cells from young mice. J Physiol Biochem 70:761–768CrossRefGoogle Scholar
  44. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress the mitochondria dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180CrossRefGoogle Scholar
  45. Sun Z, Zhang W, Li S, Xue X, Niu R, Shi L, Li B, Wang X, Wang J (2016) Altered miRNAs expression profiling in sperm of mice induced by fluoride. Chemosphere 155:109–144CrossRefGoogle Scholar
  46. Tang CL, Liang J, Qian JF, Jin LP, Du MR, Li MQ, Li DJ (2014) Opposing role of JNK-p38 kinase and ERK1/2 in hydrogen peroxide-induced oxidative damage of human trophoblast-like JEG-3 cells. Int J Clin Exp Pathol 7:959–968Google Scholar
  47. Valiyari S, Salami M, Mahdian R, Shokrgozar MA, Oloomi M, Mohammadi FA, Bouzari S (2017) sIL-24 peptide, a human interleukin-24 isoform, induces mitochondrial-mediated apoptosis in human cancer cells. Cancer Chemother Pharmacol 80:451–459CrossRefGoogle Scholar
  48. Villanueva-Paz M, Cotán D, Garrido-Maraver J, Oropesa-Ávila M, de la Mata M, Delgado-Pavón A, de Lavera I, Alcocer-Gómez E, Álvarez-Córdoba M, Sánchez-Alcázar JA (2016) AMPK regulation of cell growth, apoptosis, autophagy, and bioenergetics. Exp Suppl 107:45–71Google Scholar
  49. Wang Y, Nishi M, Doi A, Shono T, Furukawa Y, Shimada T, Furuta H, Sasaki H, Nanjo K (2010) Ghrelin inhibits insulin secretion through the AMPK-UCP2 pathway in β cells. FEBS Lett 584:1503–1508CrossRefGoogle Scholar
  50. Wang S, Song P, Zou MH (2012) AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci (Lond) 122:555–573CrossRefGoogle Scholar
  51. Wei W, Jiao Y, Ma Y, Stuart JM, Li X, Zhao F, Wang L, Sun D, Gu W (2014) Effect of fluorosis on liver cells of VC deficient and wild type mice. Sci World J 2014:287464Google Scholar
  52. Xu H, Hu LS, Chang M, Jing L, Zhang XY, Li GS (2005) Proteomic analysis of kidney in fluoride-treated rat. Toxicol Lett 160:69–75CrossRefGoogle Scholar
  53. Yang SY, Zhang L, Miao KK, Qian W, Zhang ZG (2013) Effects of selenium intervention on chronic fluorosis-induced renal cell apoptosis in rats. Biol Trace Elem Res 153:237–242CrossRefGoogle Scholar
  54. Yi B, Liu D, He M, Li QY, Liu TD, Shao JH (2013) Role of the ROS/AMPK signaling pathway in tetramethylpyrazine-induced apoptosis in gastric cancer cells. Oncol Lett 6:583–589CrossRefGoogle Scholar
  55. Yuan Y, Xue X, Guo RB, Sun XL, Hu G (2012) Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS Neurosci Ther 18:536–546CrossRefGoogle Scholar
  56. Yang S, Wang Z, Farquharson C, Alkasir R, Zahra M, Ren G, Han B (2011) Sodium fluoride induces apoptosis and alters bcl-2 family protein expression in MC3T3-E1 osteoblastic cells. Biochem Biophys Res Commun 410:910–915CrossRefGoogle Scholar
  57. Yan X, Yang X, Hao X, Ren Q, Gao J, Wang Y, Chang N, Qiu Y, Song G (2015) Sodium fluoride induces apoptosis in H9c2 cardiomyocytes by altering mitochondrial membrane potential and intracellular ROS level. Biol Trace Elem Res 166:210–215CrossRefGoogle Scholar
  58. Yan X, Wang L, Yang X, Qiu Y, Tian X, Lv Y, Tian F, Song G, Wang T (2017) Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway. Chemosphere 182:159–165CrossRefGoogle Scholar
  59. Yildirim S, Ekin S, Huyut Z, Oto G, Comba A, Uyar H (2018) Effect of chronic exposure to sodium fluoride and 7,12-dimethylbenz [a] anthracene on some blood parameters and hepatic, renal, and cardiac histopathology in rats. Fluoride 51:278–290Google Scholar
  60. Zhang Q, Chen L, Guo K, Zheng L, Liu B, Yu W, Guo C, Liu Z, Chen Y, Tang Z (2013) Effects of different selenium levels on gene expression of a subset of selenoproteins and antioxidative capacity in mice. Biol Trace Elem Res 154:255–261CrossRefGoogle Scholar
  61. Zuo H, Chen K, Chen L, Kong M, Qiu L, Lü P, Wu P, Yang YH (2018) Toxic effects of fluoride on organisms. Life Sci 198:18–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiping Gao
    • 1
  • Yu Wang
    • 1
  • Guoqiang Xu
    • 1
  • Jianing Wei
    • 1
  • Kai Chang
    • 1
  • Xiaolin Tian
    • 1
  • Maolin Liu
    • 1
  • Xiaoyan Yan
    • 2
  • Meijun Huo
    • 3
  • Guohua Song
    • 1
    Email author
  1. 1.Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal ModelShanxi Medical UniversityTaiyuanChina
  2. 2.School of Public HealthShanxi Medical UniversityShanxiChina
  3. 3.Shanxi Key Laboratory of Ecological Animal Science and Environmental MedicineShanxi Agricultural UniversityTaiguChina

Personalised recommendations