Environmental Science and Pollution Research

, Volume 26, Issue 13, pp 13147–13158 | Cite as

Accumulation of U, Th, Pb, V, Rb, and Ag in wild mushrooms Macrolepiota procera (Scop.) Singer from Goč, Serbia

  • Vesna Vukojević
  • Slađana Đurđić
  • Jelena MutićEmail author
Research Article


In this study, the content of U, Th, Pb, V, Rb, and Ag in 19 soil samples from unpolluted Goč Mountain area (Serbia) was determined. The same elements were determined in 19 Macrolepiota procera samples, separately for caps and stipes. Soil samples were subjected to the BCR sequential extraction procedure. Element contents were determined by inductively coupled plasma mass spectrometry (ICP-MS). Obtained soil values for U were in the range from 0.30 to 0.86 mg/kg and for Th from 1.7 to 13.2 mg/kg. These values are the first for background levels at unpolluted Goč area, and they are lower than the corresponding values for European unpolluted soil. The mean values in soil for Pb, V, Rb, and Ag were 27.6, 57.4, 15.8, and 0.76 mg/kg, respectively. PCA was applied to establish criteria for translocation of the analyzed elements between two parts of the mushroom. Efficient translocation for all elements except Ag as the main amount of the elements was found in caps. The mean content in the caps for U and Th was 4.3 and 63 μg/kg, respectively. Bioconcentration factors were much higher than 1 only for Rb and Ag. M. procera only weakly accumulates U and Th from soil in unpolluted areas. These findings indicate limited role of M. procera in the mycoremediation of the mentioned actinides.


Bioindicator Mycoremediation Vanadium Rubidium Actinides 


Funding information

This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, project no. 172030 and the European Commision, under the Horizon 2020, FoodEnTwin project grant agreement no. 810752.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_4723_MOESM1_ESM.docx (89 kb)
ESM 1 (DOCX 88 kb)


  1. Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. CrossRefGoogle Scholar
  2. Alonso J, García MA, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:180–188. CrossRefGoogle Scholar
  3. Baeza A, Guillén J (2006) Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Appl Radiat Isot 64:1020–1026. CrossRefGoogle Scholar
  4. Baumann N, Arnold T, Haferburg G (2014) Uranium contents in plants and mushrooms grown on a uranium-contaminated site near Ronneburg in Eastern Thuringia/Germany. Environ Sci Pollut Res 21:6921–6929. CrossRefGoogle Scholar
  5. Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111:1339–1344. CrossRefGoogle Scholar
  6. Borovička J, Dunn CE, Gryndler M, Mihaljevič M, Jelínek E, Rohovec J, Rohošková M, Řanda Z (2010a) Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit, Czech Republic. Soil Biol Biochem 42:83–91. CrossRefGoogle Scholar
  7. Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE (2010b) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744. CrossRefGoogle Scholar
  8. Borovička J, Kubrová J, Rohovec J, Řanda Z, Colin D (2011) Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations? Biometals 24:837–845. CrossRefGoogle Scholar
  9. Byrne AR, Ravnik V, Kosta L (1976) Trace element concentrations in higher fungi. Sci Total Environ 6:65–78. CrossRefGoogle Scholar
  10. Cecchi G, Marescotti P, Di Piazza S, Zotti M (2017a) Native fungi as metal remediators: silver myco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy). J Environ Sci Health Part B 52:191–195. CrossRefGoogle Scholar
  11. Cecchi G, Roccotiello E, Di Piazza S, Riggi A, Mariotti MG, Zotti M (2017b) Assessment of Ni accumulation capability by fungi for a possible approach to remove metals from soils and waters. J Environ Sci Health Part B 52:166–170. CrossRefGoogle Scholar
  12. Cocchi L, Kluza K, Zalewsk T, Apanel A, Falandysz J (2017) Radioactive caesium (134Cs and 137Cs) in mushrooms of the genus Boletus from the Reggio Emilia in Italy and Pomerania in Poland. Isot Environ Healt Stud 53:620–627. CrossRefGoogle Scholar
  13. Collin-Hansen C, Yttri KE, Andersen RA, Berthelsen BO, Steinnes E (2002) Mushrooms from two metal contaminated areas in Norway: occurrence of heavy metals and metallothionein-like proteins. Geochem Explor Env A 2:121–130. CrossRefGoogle Scholar
  14. Demirbaş A (2000) Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chem 68:415–419. CrossRefGoogle Scholar
  15. Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health C 26:256–299. CrossRefGoogle Scholar
  16. Falandysz J (2016) Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator and mycoremediator of polluted soils. Environ Sci Pollut Res 23:7444–7451. CrossRefGoogle Scholar
  17. Falandysz J (2017) Mercury accumulation of three Lactarius mushroom species. Food Chem 214:96–101. CrossRefGoogle Scholar
  18. Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501. CrossRefGoogle Scholar
  19. Falandysz J, Chwir A (1997) The concentrations and bioconcentration factors of mercury in mushrooms from the Mierzeja Wiślana sand-bar, Northern Poland. Sci Total Environ 203:221–228. CrossRefGoogle Scholar
  20. Falandysz J, Szymczyk K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, Yamasaki S (2001) ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam 18:503–513. CrossRefGoogle Scholar
  21. Falandysz J, Lipka K, Gucia M, Kawano M, Strumnik K, Kannan K (2002) Accumulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland. Environ Int 28:421–427. CrossRefGoogle Scholar
  22. Falandysz J, Gucia M, Mazur A (2007a) Content and bioconcentration factors of mercury by parasol mushroom Macrolepiota procera. J Environ Sci Health B 42:735–740. CrossRefGoogle Scholar
  23. Falandysz J, Kunito T, Kubota R, Lipka K, Mazur A, Falandysz JJ, Tanabe S (2007b) Selected elements in fly agaric Amanita muscaria. J Environ Sci Health A 42:1615–1623. CrossRefGoogle Scholar
  24. Falandysz J, Kunito T, Kubota R, Gucia M, Mazur A, Falandysz JJ, Tanabe S (2008) Some mineral constituents of parasol mushroom (Macrolepiota procera). J Environ Sci Health B 43:187–192. CrossRefGoogle Scholar
  25. Falandysz J, Frankowska A, Jarzyńska G, Dryżałowska A, Kojta AK, Zhang D (2011) Survey on composition and bioconcentration potential of 12 metallic elements in king bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. J Environ Sci Health B 46:231–246. CrossRefGoogle Scholar
  26. Falandysz J, Nnorom IC, Jarzyńska G, Romińska D, Damps K (2012) Mercury bio-concentration by puffballs (Lycoperdon perlatum) and evaluation of dietary intake risks. Bull Environ Contam Toxicol 89:759–763. CrossRefGoogle Scholar
  27. Falandysz J, Zhang J, Wang Y, Krasińska G, Kojta A, Saba M, Shen T, Li T, Liu H (2015a) Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: accumulation, distribution and probable dietary intake. Sci Total Environ 537:470–478. CrossRefGoogle Scholar
  28. Falandysz J, Zhang J, Wang Y, Saba M, Krasińska G, Wiejak A, Li T (2015b) Evaluation of the mercury contamination in fungi Boletus species from latosols, lateritic red earths, and red and yellow earths in the Circum-Pacific Mercuriferous Belt of Southwestern China. PLoSONE 10(11):e0143608. CrossRefGoogle Scholar
  29. Falandysz J, Zalewska T, Krasińska G, Apanel A, Wang Y, Pankavec S (2015c) Evaluation of the radioactive contamination in fungi genus Boletus in the region of Europe and Yunnan province in China. Appl Microbiol Biotechnol 99:8217–8224. CrossRefGoogle Scholar
  30. Falandysz J, Saba M, Liu H-G, Li T, Wang J, Wiejak A, Zhang J, Wang Y-Z, Zhang D (2016a) Mercury in forest mushrooms and topsoil from the Yunnan highlands and the Subalpine region of the Minya Konka summit in the Eastern Tibetan Plateau. Environ Sci Pollut Res 23:23730–23741. CrossRefGoogle Scholar
  31. Falandysz J, Zalewska T, Apanel A, Drewnowska N, Kluza K (2016b) Evaluation of the activity concentrations of 137Cs and 40K in some Chanterelle mushrooms from Poland and China. Environ Sci Pollut Res 23:20039–20048. CrossRefGoogle Scholar
  32. Falandysz J, Sapkota A, Dryżałowska A, Mędyk M, Feng X (2017a) Analysis of some metallic elements and metalloids composition and relationships in parasol mushroom Macrolepiota procera. Environ Sci Pollut Res 24:15528–15537. CrossRefGoogle Scholar
  33. Falandysz J, Zhang J, Wiejak A, Barałkiewicz D, Hanć A (2017b) Metallic elements and metalloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polymetallic soils from SW China. Ecotoxicol Environ Saf 142:497–502. CrossRefGoogle Scholar
  34. Falandysz J, Saniewski M, Zhang J, Zalewska T, Liu H, Kluza K (2018a) Artificial 137Cs and natural 40K in mushrooms from the subalpine region of the Minya Konka summit and Yunnan Province in China. Environ Sci Pollut Res 25:615–627. CrossRefGoogle Scholar
  35. Falandysz J, Mędyk M, Treu R (2018b) Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. Environ Sci Pollut Res 25:25190–25206. CrossRefGoogle Scholar
  36. García MA, Alonso J, Melgar MJ (2005) Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. J Chem Technol Biotechnol 80:325–330. CrossRefGoogle Scholar
  37. Gucia M, Jarzyńska G, Rafał E, Roszak M, Kojta AK, Osiej I, Falandysz J (2012) Multivariate analysis of mineral constituents of edible parasol mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ Sci Pollut Res 19:416–431. CrossRefGoogle Scholar
  38. Gupta NK, Sengupta A, Gupta A, Sonawane JR, Sahoo H (2018) Biosorption-an alternative method for nuclear waste management: a critical review. J Enviro Chem Eng 6:2159–2175. CrossRefGoogle Scholar
  39. Jarzyńska G, Gucia M, Kojta AK, Rezulak K, Falandysz J (2011) Profile of trace elements in parasol mushroom (Macrolepiota procera) from Tucholskie Forest. J Environ Sci Health B 46:741–751. Google Scholar
  40. Jorhem L, Sundstrgm B (1995) Levels of some trace elements in edible fungi. Z Lebensm Unters Forsch 201:311–316. CrossRefGoogle Scholar
  41. Kabata-Pendias A (2011) Trace elements in soils and plants. Taylor and Francis Group, LLC, LondonGoogle Scholar
  42. Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15. CrossRefGoogle Scholar
  43. Kaur H, Kapoor S, Kaur G (2016) Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ Monit Assess 188:588–598. CrossRefGoogle Scholar
  44. Kojta AK, Wang Y, Zhang J, Li T, Saba M, Falandysz J (2015) Mercury contamination of Fungi genus Xerocomus in the Yunnan province in China and the region of Europe. J Environ Sci Health A 50:1342–1350. CrossRefGoogle Scholar
  45. Kojta AK, Gucia M, Krasińska M, Saba M, Nnorom IC, Falandysz J (2016) Mineral constituents of edible field parasol (Macrolepiota procera) mushrooms and the underlying substrate from upland regions of Poland: bioconcentration potential, intake benefits, and toxicological risk. Pol J Environ Stud 25:2445–2460. CrossRefGoogle Scholar
  46. Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Colin ED, Kotrba P, Borovička J (2014) On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Hazard Mater 280:79–88. CrossRefGoogle Scholar
  47. Kułdo E, Grażyna J, Gucia M, Falandysz J (2014) Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area. Chem Pap 68:484–492. Google Scholar
  48. Lepp NW, Harrison SCS, Morrell BG (1987) A role for Amanita muscaria L. in the circulation of cadmium and vanadium in nonpolluted woodland. Environ Geochem Health 9:61–64. CrossRefGoogle Scholar
  49. Lipka K, Falandysz J (2017) Accumulation of metallic elements by Amanita muscaria from rural lowland and industrial upland regions. J Environ Sci Health B 52:184–190. CrossRefGoogle Scholar
  50. Lipka K, Saba M, Falandysz J (2018) Preferential accumulation of inorganic elements in Amanita muscaria from north-eastern Poland. J Environ Sci Health A 53:968–974. CrossRefGoogle Scholar
  51. Liu B, Peng T, Sun H, Yue H (2017) Release behavior of uranium in uranium mill tailings under environmental conditions. J Eniron Radioact 171:160–168. CrossRefGoogle Scholar
  52. Mejstřík V, Lepošová A (1993) Applicability of fungi to the monitoring of environmental pollution by heavy metals. In: Market B (ed) Plants as biomonitors. VCH, Weinheim, pp 365–378Google Scholar
  53. Mendil D, Uluözlü ÖD, Tüzen M, Hasdemir E, Sarı H (2005) Trace metal levels in mushroom samples from Ordu, Turkey. Food Chem 91:463–467. CrossRefGoogle Scholar
  54. Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol 190:916–926. CrossRefGoogle Scholar
  55. Řanda Z, Soukal L, Mizera J (2005) Possibilities of the short-term thermal and epithermal neutron activation for analysis of macromycetes (mushrooms). J Radioanal Nucl Chem 264:67–76. CrossRefGoogle Scholar
  56. Rauret G, Lopez-Sanchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM, Gomez A, Luck D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233. CrossRefGoogle Scholar
  57. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. CrossRefGoogle Scholar
  58. Selvakumara R, Ramadoss G, Menon MP, Rajendran K, Thavamani P, Naidu R, Megharaj M (2018) Challenges and complexities in remediation of uranium contaminated soils: a review. J Environ Radioact 192:592–603. CrossRefGoogle Scholar
  59. Sesli E, Tuzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black Sea Region, Turkey. J Hazard Mater 160:462–467. CrossRefGoogle Scholar
  60. Širić I, Kasap A, Bedeković D, Falandysz J (2017) Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia. J Environ Sci Health B 52:156–165. CrossRefGoogle Scholar
  61. Šlekovec M, Irgolic KJ (1996) Uptake of arsenic by mushrooms from soil. Chem Spec Bioavailable 8:67–73. CrossRefGoogle Scholar
  62. Soylak M, Saraçoğlu S, Tüzen M, Mendil D (2005) Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chem 92:649–652. CrossRefGoogle Scholar
  63. Stefanović V, Trifković J, Mutić J, Tešić Ž (2016a) Metal accumulation capacity of parasol mushroom (Macrolepiota procera) from Rasina region (Serbia). Environ Sci Pollut Res 23:13178–13190. CrossRefGoogle Scholar
  64. Stefanović V, Trifković J, Djurdjić S, Vukojević V, Tešić Ž, Mutić J (2016b) Study of silver, selenium and arsenic concentration in wild edible mushroom Macrolepiota procera, health benefit and risk. Environ Sci Pollut Res 23:22084–22098. CrossRefGoogle Scholar
  65. Stijve T, Noorloss T, Byrne AR, Šlejkovec Z, Goessler W (1998) High selenium levels in edible Albatrellus mushrooms. Dtsch Lebensm-Rundsch 94:275–279 (In German)Google Scholar
  66. Stijve T, Andrey D, Lucchini G, Goessler W (2001) Simultaneous uptake of rare earth elements, aluminium, iron, and calcium by various macromycetes. Austral Mycol 20:92–98Google Scholar
  67. Stojanović M, Mrdaković Popić J, Stevanović D, Martinović LJ (2006) Phosphorus fertilizers as a source of uranium in Serbian soils. Agron Sustain Dev 26:179–183. CrossRefGoogle Scholar
  68. Svoboda L, Chrastný V (2008) Levels of eight trace elements in edible mushrooms from a rural area. Food Addit Contam: Part A 25:51–58. CrossRefGoogle Scholar
  69. Treu R, Falandysz J (2017) Mycoremediation of hydrocarbons with basidiomycetes—a review. J Environ Sci Health B 52:148–155. CrossRefGoogle Scholar
  70. Tüzen M (2003) Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem J 74:289–297. CrossRefGoogle Scholar
  71. Tüzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea Region of Turkey. Food Control 18:806–810. CrossRefGoogle Scholar
  72. Vetter J (2004) Arsenic content of some edible mushroom species. Eur Food Res Technol 219:71–74. CrossRefGoogle Scholar
  73. Wondratschek I, Röder U (1993) Monitoring of heavy metals in soils by higher fungi. In: Market B (ed) Plants as biomonitors. VCH, Weinheim, pp 345–363Google Scholar
  74. WRB classification (2006) World reference base for soil resources. Food and Agriculture organization of the United Nations, Rome ISBN 92-5-105511-4:1-97. Accessed May 2018
  75. Yamaç M, Yıldız D, Sarıkürkcü C, Çelikkollu M, Solak HM (2007) Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem 103:263–267. CrossRefGoogle Scholar
  76. Zalewska T, Cocchi L, Falandysz J (2016) Radiocaesium in Cortinarius spp. mushrooms in the regions of the Reggio Emilia in Italy and Pomerania in Poland. Environ Sci Pollut Res 23:23169–23174. CrossRefGoogle Scholar
  77. Zocher A, Kraemer D, Merschel G, Bau M (2018) Distribution of major and trace elements in the bolete mushroom Suillus luteus and the bioavailability of rare earth elements. Chem Geol 483:491–500. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Innovation Center of Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  3. 3.Ghent University Global CampusIncheonSouth Korea

Personalised recommendations