Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community)

  • Maria PachesEmail author
  • Daniel Aguado
  • Remedios Martínez-Guijarro
  • Inmaculada Romero
Research Article


Ecosystem-based management is one of the strategies to protect the coastal areas. One of the key elements is phytoplankton community composition since it represents a good indicator of anthropogenic pressures. This identifies the seasonal patterns of phytoplankton, and its alterations by the stress factors induced by human activities are highly valuable. This research represents the first attempt to study that 476 km of western Mediterranean coastal belongs to the Valencian Community (Spain) based on the phytoplankton composition approach. The water samples during a 5-year period (6757 water samples) were taken to determine its phytoplankton group’s dynamics and its relationship with anthropogenic stressors by means of a series of plots and statistical analyses. Diatoms are the group that most contribute to the whole community composition with two periods of maximum abundance. The Prasinophyceae and Cryptophyceae show unimodal patterns varying its maximum values depending on the season. The picocyanobacteria group exhibited the clearest and best-defined pattern. Other groups have no clear seasonal pattern and become abundant in areas of higher anthropogenic pressure.

Graphical abstract Figure A contains poor quality of text in image. Otherwise, please provide replacement figure file.A new graphical abstract, with higher quality is attached.


Mediterranean Sea Seasonality Phytoplankton Bloom Anthropogenic pressure 



  1. Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22:GB3001. CrossRefGoogle Scholar
  2. Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8(5):e63091. CrossRefGoogle Scholar
  3. Buitenhuis E, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB (2012) Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data 4:37–46CrossRefGoogle Scholar
  4. Casas B, Varela M, Canle M, González N, Bodea A (1997) Seasonal variations of nutrients, seston and phytoplankton, and upwelling intensity off La Coruña (NW Spain). Estuar Coast Shelf Sci 44:767–778CrossRefGoogle Scholar
  5. Cerino F, Zingone A (2006) A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur J Phycol 41:363–378CrossRefGoogle Scholar
  6. Chen B, Liu H (2010) Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol Oceanogr 55:965–972CrossRefGoogle Scholar
  7. Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD, Vivirito K (eds) Primary productivity and biogeochemical cycles in the sea. Springer, BostonGoogle Scholar
  8. Claudet J, Fraschetti S (2010) Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol Conserv 143:2195–2206CrossRefGoogle Scholar
  9. Cloern JE, Foster SQ, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal. Biogeosciences 11:2477–2501. CrossRefGoogle Scholar
  10. Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951CrossRefGoogle Scholar
  11. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884CrossRefGoogle Scholar
  12. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206CrossRefGoogle Scholar
  13. Hair JE, Anderson RE, Tatham RL, Black WC (2006) Multivariate data analysis, 5th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  14. Hoef-Emden K (2014) Osmotolerance in the Cryptophyceae: jacks-of-all trades in the Chroomonas clade. Protist. 165:123–143CrossRefGoogle Scholar
  15. Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226CrossRefGoogle Scholar
  16. Kaiser H (1974) An index of factorial simplicity. Psychometrika 39:31–36CrossRefGoogle Scholar
  17. Kirkwood D, Aminot A, Pertillä M (1991) Report on the results of the fourth intercomparison exercise for nutrients in sea water. ICES Cooperative Research Report, n°174Google Scholar
  18. Lejeusne C, Chevaldonne P, Pergent-Martini C, Boudouresque CF, Perez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260CrossRefGoogle Scholar
  19. Lepistö L, Holopainen A (2003) Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia 502:307–310CrossRefGoogle Scholar
  20. Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639CrossRefGoogle Scholar
  21. Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170CrossRefGoogle Scholar
  22. Marie D, Zhu F, Balaguer V, Ras J, Vaulot D (2006) Eukaryotic picoplankton communities of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR). FEMS Microbiol Ecol 55:403–415CrossRefGoogle Scholar
  23. Micheli F, Halpern B, Walbridge S, Ciriaco S, Ferretti F, Fraschetti S, Lewison R, Nykjaer L, Rosenberg AA (2013) Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS One 8(12):e79889. CrossRefGoogle Scholar
  24. Moisan JR, Moisan TA, Abbot MR (2002) Modelling the effect of temperature on the maximum growth rates of phytoplankton populations. Ecol Model 153:197–215CrossRefGoogle Scholar
  25. Morán XAG (2007) Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a major contribution to carbon fluxes. Aquat Microb Ecol 49:267–279CrossRefGoogle Scholar
  26. Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986CrossRefGoogle Scholar
  27. Pachés M, Romero I, Hermosilla Z, Martínez-Guijarro R (2012) Phymed: an ecological classification system for the water framework directive based on phytoplankton community composition. Ecol Indic 19:15–23CrossRefGoogle Scholar
  28. Palenik B, Grimwoodc J, Aerts A, Rouzé P, Salamov A, Putnam N (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104:7705–7710CrossRefGoogle Scholar
  29. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, LondonGoogle Scholar
  30. Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. CrossRefGoogle Scholar
  32. Ribera d’Alcalà M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (gulf on Naples): an attempt to discern recurrences and trends. Sci Mar 68:65–83CrossRefGoogle Scholar
  33. Romero I, Pachés M, Martínez-Guijarro R, Ferrer J (2013) Glophymed: an index to establish the ecological status for the water framework directive based on phytoplankton in coastal waters. Mar Pollut Bull 75:218–223. CrossRefGoogle Scholar
  34. Sammartino M, Di Cicco A, Marullo S, Santoleri R (2015) Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sci 11:759–778. CrossRefGoogle Scholar
  35. Smayda TJ (1980) Phytoplankton succession. In: Morris I (ed) Physiological ecology of phytoplankton, studies in ecology. Blackwell, Oxford, pp 493–570Google Scholar
  36. Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol 14:1199–1120CrossRefGoogle Scholar
  37. Sournia A (1978) Phytoplankton manual. Monographs on oceanographic methodology. UNESCOGoogle Scholar
  38. Spanish Ministry of Agriculture, Fisheries and the Environment (2018) Accessed May 2018
  39. Treguer P, Le Corre P (1975) Manuel d’analyse des nutritifs dans l’eau de mer. Université de Bretagne Occidentale, BrestGoogle Scholar
  40. Vargo GA (1978) Using a fluorescence microscope. In: Sournia A (ed) Phytoplankton manual. MG Oceanography Metodology. UNESCO: 108–112Google Scholar
  41. Winder M, Cloern JE (2010) The annual cycles of phytoplankton biomass. Philos Trans R Soc B 365:3215–3226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CALAGUA – Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient – IIAMAUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.IIAMAUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations