Advertisement

Ailanthus altissima (Miller) Swingle seed oil: chromatographic characterization by GC-FID and HS-SPME-GC-MS, physicochemical parameters, and pharmacological bioactivities

  • Asma EL Ayeb-ZakhamaEmail author
  • Hassiba Chahdoura
  • Borhane Eddine Cherif Ziani
  • Mejdi Snoussi
  • Mehdi Khemiss
  • Guido Flamini
  • Fethia Harzallah-Skhiri
Research Article
  • 61 Downloads

Abstract

This study aimed to identify the physicochemical and the chemical properties of Ailanthus altissima (Miller) Swingle seed oil and to evaluate its in vitro antioxidant and antibacterial activities and in vivo analgesic and anti-inflammatory activities. The fatty acids’ composition was determined using GC-FID. The oil was screened for antioxidant activity by DPPH test. The analgesic and anti-inflammatory activities were determined using the acetic acid writhing test in mice and the carrageenan-induced paw edema assay in rats, respectively. Volatile compounds were characterized by HS-SPME-GC-MS. A. altissima produces seeds which yielded 17.32% of oil. The seed oil was characterized by a saponification number of 192.6 mg KOH∙g of oil, a peroxide value of 11.4 meq O2∙kg of oil, a K232 of 4.04, a K270 of 1.24, and a phosphorus content of 126.2 ppm. The main fatty acids identified were palmitic (3.06%), stearic (1.56%), oleic (38.35%), and linoleic acids ones (55.76%). The main aroma compounds sampled in the headspace were carbonyl derivatives. The oil presents an important antioxidant activity (IC50 = 24.57 μg/mL) and a modest antimicrobial activity. The seed oil at 1 g/kg showed high analgesic (91.31%) and anti-inflammatory effects (85.17%). The presence of high levels of unsaturated fatty acids and the noteworthy antioxidant capacity of the seed oil can hypothesize its use as an analgesic and anti-inflammatory agent.

Keywords

Ailanthus altissima Seed oil Physicochemical parameters Fatty acids Volatile compounds Biological activities 

Notes

Acknowledgements

The authors acknowledge Pr. Fethia Khemiss for her assistance to do the pharmacological activities and Pr Nadra Kerkni for reviewing the English language.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Akbar E, Yaakob Z, Kamarudin SK et al (2009) Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur J Sci Res 29:396–403Google Scholar
  2. Akkol EK, Güvenç A, Yesilada E (2009) A comparative study on the antinociceptive and anti-inflammatory activities of five Juniperus taxa. J Ethnopharmacol 125:330–336.  https://doi.org/10.1016/j.jep.2009.05.031 CrossRefGoogle Scholar
  3. Alarcón de la Lastra C, Barranco MD, Motilva V, Herrerías JM (2001) Mediterranean diet and health: biological importance of olive oil. Curr Pharm Des 7:933–950CrossRefGoogle Scholar
  4. Albouchi F, Hassen I, Casabianca H, Hosni K (2013) Phytochemicals, antioxidant, antimicrobial and phytotoxic activities of Ailanthus altissima (Mill.) Swingle leaves. S Afr J Bot 87:164–174.  https://doi.org/10.1016/j.sajb.2013.04.003 CrossRefGoogle Scholar
  5. AOAC (1990) Methods 970.39, 958.05,. In: Official Methods of Analyses of the Association of Official Analytical Chemists, 15th edn. Washington, DC, USAGoogle Scholar
  6. Awad AB, Chan KC, Downie AC, Fink CS (2009) Peanuts as a source of β -sitosterol , a sterol with anticancer properties. Nutr Cancer 36:238–241.  https://doi.org/10.1207/S15327914NC3602 CrossRefGoogle Scholar
  7. Balazs IL (1987) Refining and use of byproducts from various fats and oils. J Am Oil Chem Soc 64:1126–1127CrossRefGoogle Scholar
  8. Borgi W, Recio M-C, Ríos JL, Chouchane N (2008) Anti-inflammatory and analgesic activities of flavonoid and saponin fractions from Zizyphus lotus (L .) lam. S Afr J Bot 74:320–324.  https://doi.org/10.1016/j.sajb.2008.01.009 CrossRefGoogle Scholar
  9. Brizicky GK (1962) The genera of Simaroubaceae and Burseraceae in the southeastern United States. J Arnold Arboretum, XLIII 173–186Google Scholar
  10. Cabral CE, Klein MRTS (2017) Review article phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arq Bras Cardiol 109:475–482.  https://doi.org/10.5935/abc.20170158 Google Scholar
  11. Cerchiara T, Chidichimo G, Ragusa MI, Belsito EL, Liguori A, Arioli A (2010) Characterization and utilization of Spanish broom ( Spartium junceum L .) seed oil. Ind Crop Prod 31:423–426.  https://doi.org/10.1016/j.indcrop.2009.11.003 CrossRefGoogle Scholar
  12. Chahdoura H, Adouni K, Mhadhebi L et al (2017a) Bioactivity and chemical characterization of Opuntia macrorhiza Engelm. seed oil: potential food and pharmaceutical applications. Food Funct 8:2739–2747.  https://doi.org/10.1039/c7fo00731k CrossRefGoogle Scholar
  13. Chahdoura H, El Bok S, Refifa T et al (2017b) Activity of anti-inflammatory, analgesic and antigenotoxic of the aqueous flower extracts of Opuntia microdasys Lem.Pfeiff. J Pharm Pharmacol 69:1056–1063.  https://doi.org/10.1111/jphp.12734 CrossRefGoogle Scholar
  14. Christie WW (2003) Determination of lipid profiles by gas chromatography. In: Lipid analysis, 3rd edn. The Oily Press, Bridgwater (UK), pp 118–121Google Scholar
  15. Chu BS, Baharin BS, Quek SY (2002) Factors affecting pre-concentration of tocopherols and tocotrienols from palm fatty acid distillate by lipase-catalysed hydrolysis. Food Chem 79:55–59CrossRefGoogle Scholar
  16. Collier HJ, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 32:295–310CrossRefGoogle Scholar
  17. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356.  https://doi.org/10.1016/j.ijantimicag.2005.09.002 CrossRefGoogle Scholar
  18. Davies PA (1942) The history, distribution, and value of Ailanthus in North America. Trans Ky Acad Sci 9:12–14Google Scholar
  19. De Leonardis A, Angelico R, Macciola V, Ceglie A (2013) Effects of polyphenol enzymatic-oxidation on the oxidative stability of virgin olive oil. Food Res Int 54:2001–2007.  https://doi.org/10.1016/j.foodres.2013.04.034 CrossRefGoogle Scholar
  20. Deng J, Liu Q, Zhang Q, Zhang C, Liu D, Fan D, Yang H (2018) Comparative study on composition , physicochemical and antioxidant characteristics of different varieties of kiwifruit seed oil in China. Food Chem 264:411–418.  https://doi.org/10.1016/j.foodchem.2018.05.063 CrossRefGoogle Scholar
  21. Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109:710–732.  https://doi.org/10.1002/ejlt.200700040 CrossRefGoogle Scholar
  22. Đurđevića S, Šavikinb K, Živkovićb J et al (2018) Antioxidant and cytotoxic activity of fatty oil isolated by supercritical fl uid extraction from microwave pretreated seeds of wild growing Punica granatum L. J Supercrit Fluids 133:225–232.  https://doi.org/10.1016/j.supflu.2017.10.021 CrossRefGoogle Scholar
  23. El Ayeb-zakhama E, Ben S, Sakka-rouis L, Flamini G (2014) Chemical composition and phytotoxic effects of essential oils obtained from Ailanthus altissima (mill.) S wingle cultivated in Tunisia. Chem Biodivers 11:1216–1227CrossRefGoogle Scholar
  24. El Ayeb-Zakhamaa A, Sakka-Rouis L, Flamini G, et al (2017) Chemical composition and allelopathic potential of essential oils from Citharexylum spinosum L. grown in Tunisia. Chem Biodivers 14:. doi:  https://doi.org/10.1002/cbdv.201600225
  25. El Kinawy OS (2010) Characterization of Egyptian Jatropha oil and its oxidative stability. Energy Sources, Part A 32:119–127.  https://doi.org/10.1080/15567030802089102 CrossRefGoogle Scholar
  26. Fadhil AB, Alhayali MA, Saeed LI (2017) Date ( Phoenix dactylifera L .) palm stones as a potential new feedstock for liquid bio-fuels production. Fuel 210:165–176.  https://doi.org/10.1016/j.fuel.2017.08.059 CrossRefGoogle Scholar
  27. Fan S, Liang T, Yu H, Bi Q, Li G, Wang L (2016) Kernel characteristics , oil contents , fatty acid compositions and biodiesel properties in developing Siberian apricot ( Prunus sibirica L .) seeds. Ind Crop Prod 89:195–199.  https://doi.org/10.1016/j.indcrop.2016.05.012 CrossRefGoogle Scholar
  28. FDA (Food and Drug Administration) (1974) Fat and oil regulations, food and drug decree of 1974, No 35: 2-6. Federal Ministry of HealthGoogle Scholar
  29. Ferrari RA, Oliveira V da S, Scabio A (2005) Oxidative stability of biodiesel from soybean oil fatty acid ethyl esters. Sci Agric 62:291–295CrossRefGoogle Scholar
  30. Fezai M, Senovilla L, Jemaà M, Ben-attia M (2013) Analgesic , anti-inflammatory and anticancer activities of extra virgin olive oil. J Lipids 2013:1–8CrossRefGoogle Scholar
  31. Gohari AR, Hajimehdipoor H, Saeidnia S, Ajani Y, Hadjiakhoondi A (2011) Antioxidant activity of some medicinal species using FRAP assay. J Med Plant 10:7Google Scholar
  32. Goli SAH, Sahafi SM, Rashidi B, Rahimmalek M (2013) Novel oilseed of Dracocephalum kotschyi with high n-3 to n-6 polyunsaturated fatty acid ratio. Ind Crop Prod 43:188–193.  https://doi.org/10.1016/j.indcrop.2012.07.036 CrossRefGoogle Scholar
  33. Gouda N, Singh RK, Meher SN, Panda AK (2016) Production and characterization of bio oil and bio char from fl ax seed residue obtained from supercritical fl uid extraction industry. J Energy Inst 90:265–275.  https://doi.org/10.1016/j.joei.2016.01.003 CrossRefGoogle Scholar
  34. Harwood JL, Yaqoob P (2002) Nutritional and health aspects of olive oil. Eur J Lipid Sci Technol 104:685–697CrossRefGoogle Scholar
  35. Henry GE, Momin RA, Nair MG, Dewitt DL (2002) Antioxidant and cyclooxygenase activities of fatty acids found in food. J Agric Food Chem 50:2231–2234CrossRefGoogle Scholar
  36. Hernandez B, Luna G, Garcia O, Mendoza MR, Azuara E, Beristain CI, Jimenez M (2013) Extraction and characterization of Oecopetalum mexicanum seed oil. Ind Crop Prod 43:355–359.  https://doi.org/10.1016/j.indcrop.2012.07.022 CrossRefGoogle Scholar
  37. Hoseini SS, Naja G, Ghobadian B et al (2018a) Ailanthus altissima (tree of heaven) seed oil : characterisation and optimisation of ultrasonication-assisted biodiesel production. Fuel 220:621–630.  https://doi.org/10.1016/j.fuel.2018.01.094 CrossRefGoogle Scholar
  38. Hoseini SS, Najafi G, Ghobadian B, Mamat R, Ebadi MT, Yusaf T (2018b) Novel environmentally friendly fuel: the effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel. Renew Energy 125:283–294.  https://doi.org/10.1016/j.renene.2018.02.104 CrossRefGoogle Scholar
  39. Houshia OJ, Qutit A, Zaid O et al (2014) Determination of total polyphenolic antioxidants contents in west-bank olive oil. J Nat Sci Res 4:71–76Google Scholar
  40. ISO (1991) Animal and vegetable fats and oils. In: ISO 6799: determination of composition of the sterol fraction. Method using gas chromatographyGoogle Scholar
  41. ISO (2002) Animal and vegetable fats and oils. In: ISO 3657: determination of saponification valueGoogle Scholar
  42. ISO (2007) Animal and vegetable fats and oils. In: ISO 3960: determination of peroxide value, iodometric (visual) endpoint determinationGoogle Scholar
  43. ISO (2009a) Animal and vegetable fats and oils. In: ISO 660: determination of acid value and acidity, ISO 3961: determination of iodine valueGoogle Scholar
  44. ISO (2009b) Determination of acid value and acidity. In: ISO 3961: determination of iodine valueGoogle Scholar
  45. ISO (2011) Animal and vegetable fats and oils. In: ISO 3656: determination of ultraviolet absorbance expressed as specific UV extinctionGoogle Scholar
  46. IUPAC (1987) Section 2: oils and fats. In: Paquot C, Hautfenne A (eds) Standard methods for the analysis of oil seeds, fats and derivatives, 7th revise. International Union of Pure and Applied Chemistry. Blackwell Scientific Publications, OxfordGoogle Scholar
  47. Kalogeropoulos N, Tsimidou MZ (2014) Antioxidants in Greek virgin olive oils. Antioxydants 3(2):387–413CrossRefGoogle Scholar
  48. Lajili S, Azouaou SA, Turki M, Muller CD, Bouraoui A (2016a) Anti-inflammatory, analgesic activities and gastro-protective effects of the phenolic contents of the red alga, Laurencia obtusa. Eur J Integr Med 8:298–306.  https://doi.org/10.1016/j.eujim.2015.12.006 CrossRefGoogle Scholar
  49. Lajili S, Deghrigue M, Bel Haj Amor H, Muller CD, Bouraoui A (2016b) In vitro immunomodulatory activity and in vivo anti-inflammatory and analgesic potential with gastroprotective effect of the Mediterranean red alga Laurencia obtusa. Pharm Biol 54:2486–2495.  https://doi.org/10.3109/13880209.2016.1160937 CrossRefGoogle Scholar
  50. Liu P, Xu Y, Gao X, Zhu XY, du MZ, Wang YX, Deng RX, Gao JY (2017) Industrial crops & products optimization of ultrasonic-assisted extraction of oil from the seed kernels and isolation of monoterpene glycosides from the oil residue of Paeonia. Ind Crop Prod 107:260–270.  https://doi.org/10.1016/j.indcrop.2017.04.013 CrossRefGoogle Scholar
  51. Mariod A, Matthäus B, Eichner K, Hussein IH (2015) Phenolic compounds of three unconventional sudanese oils. Acta Sci Pol Technol Aliment 14(1):63–69CrossRefGoogle Scholar
  52. Marzouk B, Marzouk Z, Haloui E, Fenina N, Bouraoui A, Aouni M (2010) Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J Ethnopharmacol 128:15–19.  https://doi.org/10.1016/j.jep.2009.11.027 CrossRefGoogle Scholar
  53. Mohan MR, Chandra R, Jala R et al (2016) Swietenia mahagoni seed oil : a new source for biodiesel production. Ind Crop Prod 90:28–31.  https://doi.org/10.1016/j.indcrop.2016.06.010 CrossRefGoogle Scholar
  54. Nasri N, Khaldi A, Fady B, Triki S (2005) Fatty acids from seeds of Pinus pinea L .: composition and population profiling. Phytochemistry 66:1729–1735.  https://doi.org/10.1016/j.phytochem.2005.05.023 CrossRefGoogle Scholar
  55. Nayak BS, Patel KN (2010) Physicochemical characterization of seed and seed oil of Jatropha curcas L . collected from Bardoli ( South Gujarat ). Sains Malays 39:951–955Google Scholar
  56. Nehdi I (2011a) Characteristics , chemical composition and utilisation of Albizia julibrissin seed oil. Ind Crop Prod 33:30–34.  https://doi.org/10.1016/j.indcrop.2010.08.004 CrossRefGoogle Scholar
  57. Nehdi IA (2011b) Characteristics and composition of Washingtonia filifera ( Linden ex André ) H . Wendl . seed and seed oil. Food Chem 126:197–202.  https://doi.org/10.1016/j.foodchem.2010.10.099 CrossRefGoogle Scholar
  58. Nehdi I, Omri S, Khalil MI, Al-resayes SI (2010) Characteristics and chemical composition of date palm ( Phoenix canariensis ) seeds and seed oil. Ind Crop Prod 32:360–365.  https://doi.org/10.1016/j.indcrop.2010.05.016 CrossRefGoogle Scholar
  59. Nehdi IA, Sbihi H, Tan PC et al (2012) Characteristics, composition and thermal stability of Acacia senegal ( L .) Willd . seed oil. Ind Crop Prod 36:54–58.  https://doi.org/10.1016/j.indcrop.2011.08.005 CrossRefGoogle Scholar
  60. Neuza J, Da Silva AC, Aranha CPM (2016) Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds. An Acad Bras Cienc 88:951–958CrossRefGoogle Scholar
  61. Nogala-Kalucka M, Rudzinska M, Zadernowski R, Siger A, Krzyzostaniak I (2010) Phytochemical content and antioxidant properties of seeds of unconventional oil plants. J Am Oil Chem Soc 87:1481–1487.  https://doi.org/10.1007/s11746-010-1640-8 CrossRefGoogle Scholar
  62. Oomah BD, Busson M, Godfrey DV, Drover JCG (2002) Characteristics of hemp ( Cannabis sativa L.) seed oil. Food Chem 76(1):33–43CrossRefGoogle Scholar
  63. Ouilly JT, Bazongo P, Bougma A, Kaboré N, Lykke AM, Ouédraogo A, Bassolé IHN (2017) Chemical composition , physicochemical characteristics , and nutritional value of Lannea kerstingii seeds and seed oil. J Anal Methods Chem 2017:1–7CrossRefGoogle Scholar
  64. Ramadan MF, Kroh LW, Mörsel J-T (2003) Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and Niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem 51:6961–6969CrossRefGoogle Scholar
  65. Ramadan FM, Sharanabasappa G, Parmjyothi S et al (2006) Profile and levels of fatty acids and bioactive constituents in mahua butter from fruit-seeds of buttercup tree [ Madhuca longifolia ( Koenig )]. Eur Food Res Technol 222:710–718.  https://doi.org/10.1007/s00217-005-0155-2 CrossRefGoogle Scholar
  66. Ramadan MF, Zayed R, El-Shamy H (2007) Screening of bioactive lipids and radical scavenging potential of some solanaceae plants. Food Chem 103:885–890.  https://doi.org/10.1016/j.foodchem.2006.09.040 CrossRefGoogle Scholar
  67. Rosa MDI, Giroud JP, Willouchby DA (1971) Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol 104:15–29CrossRefGoogle Scholar
  68. Salarbashi D, Tafaghodi M (2018) International journal of biological macromolecules an update on physicochemical and functional properties of newly seed gums. Int J Biol Macromol 119:1240–1247.  https://doi.org/10.1016/j.ijbiomac.2018.06.161 CrossRefGoogle Scholar
  69. Sayed Ahmed B, Talou T, Saad Z et al (2018) Fennel oil and by-products seed characterization and their potential applications. Ind Crop Prod 111:92–98.  https://doi.org/10.1016/j.indcrop.2017.10.008 CrossRefGoogle Scholar
  70. Singh S, Nair V, Jain S, Gupta YK (2008) Evaluation of anti-inflammatory activity of plant lipids containing α-linolenic acid. Indian J Exp Biol 46:453–456Google Scholar
  71. Singh B, Singh JP, Kaur A, Singh N (2017) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16CrossRefGoogle Scholar
  72. Snoussi M, Noumi E, Trabelsi N, Flamini G, Papetti A, de Feo V (2015) Mentha spicata essential oil: chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of vibrio spp. strains. Molecules 20:14402–14424.  https://doi.org/10.3390/molecules200814402 CrossRefGoogle Scholar
  73. Soobrattee MA, Neergheen VS, Luximon-ramma A et al (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 579:200–213.  https://doi.org/10.1016/j.mrfmmm.2005.03.023 CrossRefGoogle Scholar
  74. Tsaknis J, Lalas S (2002) Stability during frying of Moringa oleifera seed oil variety Periyakulam 1. J Food Compos Anal 15:79–101.  https://doi.org/10.1006/jfca.2001.1043 CrossRefGoogle Scholar
  75. Tura D, Gigliotti C, Pedo S et al (2007) Influence of cultivar and site of cultivation on levels of lipophilic and hydrophilic antioxidants in virgin olive oils (Olea Europea L.) and correlations with oxidative stability. Sci Hortic 112:108–119.  https://doi.org/10.1016/j.scienta.2006.12.036 CrossRefGoogle Scholar
  76. Von SC, Harris WS (2007) Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res 73:310–315.  https://doi.org/10.1016/j.cardiores.2006.08.019 CrossRefGoogle Scholar
  77. Walum E (1998) Acute oral toxicity. Environ Health Perspect 106:497–503Google Scholar
  78. Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. medicines 2:251–286.  https://doi.org/10.3390/medicines2030251 CrossRefGoogle Scholar
  79. Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547CrossRefGoogle Scholar
  80. Yang B, Karlsson RM, Oksman PH, Kallio HP (2001) Phytosterols in sea buckthorn (Hippophaë rhamnoides L.) berries: identification and effects of different origins and harvesting times. J Agric Food Chem 49:5620–5629CrossRefGoogle Scholar
  81. Yang X, Zhang D, Song L et al (2017) Chemical profile and antioxidant activity of the oil from Peony seeds ( Paeonia suffruticosa Andr .). Oxidative Med Cell Longev 2017:1–11Google Scholar
  82. Ye Y, Guo Y, Luo Y (2012) Anti-inflammatory and analgesic activities of a novel biflavonoid from shells of Camellia oleifera. Int J Mol Sci 13:12401–12411.  https://doi.org/10.3390/ijms131012401 CrossRefGoogle Scholar
  83. Yıldız M, Gürcan TŞ, Özdemir M (1998) Oil composition of pistachio nuts (Pistacia vera L .) from Turkey. Lipid/Fett 100:84–86CrossRefGoogle Scholar
  84. Yin H, Sathivel S (2010) Physical properties and oxidation rates of unrefined menhaden oil ( Brevoortia patronus ). J Food Sci 75:163–168.  https://doi.org/10.1111/j.1750-3841.2010.01532.x CrossRefGoogle Scholar
  85. Yu H, Fan S, Bi Q, Wang S, Hu X, Chen M, Wang L (2017) Seed morphology , oil content and fatty acid composition variability assessment in yellow horn ( Xanthoceras sorbifolium Bunge ) germplasm for optimum biodiesel production. Ind Crop Prod 97:425–430.  https://doi.org/10.1016/j.indcrop.2016.12.054 CrossRefGoogle Scholar
  86. Zhuqiu S, Dongxian X (2014) The identity of Ailanthus guangxiensis (Simaroubaceae) and lectotypification of A. integrifolia Lamarck. Phytotaxa 173:177–180CrossRefGoogle Scholar
  87. Ziani BEC, Barros L, Boumehira AZ, Bachari K, Heleno SA, Alves MJ, Ferreira ICFR (2018a) Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food Funct 9:149–159.  https://doi.org/10.1039/C7FO01315A CrossRefGoogle Scholar
  88. Ziani BEC, Heleno SA, Bachari K et al (2018b) Phenolic compounds characterization by LC-DAD- ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Res Int.  https://doi.org/10.1016/j.foodres.2018.08.041

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Asma EL Ayeb-Zakhama
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    Email author
  • Hassiba Chahdoura
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  • Borhane Eddine Cherif Ziani
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  • Mejdi Snoussi
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  • Mehdi Khemiss
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  • Guido Flamini
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  • Fethia Harzallah-Skhiri
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  1. 1.Laboratory of Recherche “Bioressourses: Biology Integrative & Valorisation” High Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Centre de recherche scientifique et technique en Analyses physico-chimiques CRAPCBou IsmailAlgeria
  3. 3.Laboratory of Genetics Biodiversity and Valorisation of BioressourcesHigher Institute of Biotechnology of MonastirMonastirTunisia
  4. 4.Department of Biology, College of ScienceUniversity of HailHa’ilSaudi Arabia
  5. 5.Department of Dental MedicineFattouma Bourguiba University Hospital of MonastirMonastirTunisia
  6. 6.Department of PharmacyUniversity of PisaPisaItaly
  7. 7.Interdepartmental Research Centre “Nutraceutical and Food for Health”University of PisaPisaItaly
  8. 8.Laboratoire de Recherche “Bioressourses: Biologie Intégrative & Valorisation”Institut Supérieur de Biotechnologie de Monastir, Université de MonastirMonastirTunisia

Personalised recommendations