Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Antioxidant vitamin E protects embryos of Xenopus tropicalis against lambda-cyhalothrin induced embryotoxicity

  • 166 Accesses

Abstract

Pesticides are capable of increasing risks to the early development of nontarget organisms through oxidative stress. The supplementation of antioxidants could help to modulate the toxic effects of pesticides, but much remains to be understood in the interactions between pesticides and antioxidants in amphibians. In the present study, the embryotoxicity of a widely used pyrethroid, lambda-cyhalothrin (LCT), and the potential effect of α-tocopherol (TOC) on embryos of Xenopus tropicalis were evaluated. Exposure to LCT did not affect the hatch rate, survival, or body length of the embryos. However, environmentally relevant concentrations of LCT could induce significant malformations on the larvae. Exposure to LCT led to a concentration-dependent induction of oxidative stress and cytotoxicity that subsequently resulted in embryotoxicity. During the early developmental stages, vitamin E could work as a powerful protective antioxidant. The LCT-induced overproduction of reactive oxygen species and increased enzymatic activities were fully inhibited by treatment with 1 μg/L TOC. However, only supplementation with 100 μg/L TOC provided partial protection against the morphological changes caused by LCT. The results from the present study suggest that antioxidant vitamin E possesses protective potential against pyrethroid-induced embryotoxicity in amphibian embryos through the prevention of oxidative stress.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10(6):RA141–RA147

  2. Agianian B, Tucker PA, Schouten A, Leonard K, Bullard B, Gros P (2003) Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products. J Mol Biol 326(1):151–165. https://doi.org/10.1016/S0022-2836(02)01327-X

  3. Aly N, EL-Gendy K, Mahmoud F, El-Sebae AK (2010) Protective effect of vitamin C against chlorpyrifos oxidative stress in male mice. Pestic Biochem Physiol 97(1):7–12. https://doi.org/10.1016/j.pestbp.2009.11.007

  4. Anderson TA, Salice CJ, Erickson RA, McMurry ST, Cox SB, Smith LM (2013) Effects of landuse and precipitation on pesticides and water quality in playa lakes of the southern high plains. Chemosphere 92(1):84–90. https://doi.org/10.1016/j.chemosphere.2013.02.054

  5. Apel K, Hirt H (2004) Reactive oxygen specees: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55(1):373–399

  6. Arslan H, Özdemir S, Altun S (2017) Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.). Chemosphere 180:491–499. https://doi.org/10.1016/j.chemosphere.2017.04.057

  7. Aydin-Sinan H, Güngördü A, Ozmen M (2012) Toxic effects of deltamethrin and λ-cyhalothrin on Xenopus laevis tadpoles. J Environ Sci Health B 47(5):397–402. https://doi.org/10.1080/03601234.2012.648545

  8. Ching Kuang Chow (1991) Vitamin E and oxidative stress. Free Radic Biol Med 11(2):215–232. https://doi.org/10.1016/0891-5849(91)90174-2

  9. Dale K, Rasinger JD, Thorstensen KL, Penglase S, Ellingsen S (2017) Vitamin E reduces endosulfan-induced toxic effects on morphology and behavior in early development of zebrafish (Danio rerio). Food Chem Toxicol 101:84–93. https://doi.org/10.1016/j.fct.2017.01.004

  10. Dar SA, Yousuf AR, Balkhi M u H, Ganai FA, Bhat FA (2015) Assessment of endosulfan induced genotoxicity and mutagenicity manifested by oxidative stress pathways in freshwater cyprinid fish crucian carp (Carassius carassius L.). Chemosphere 120:273–283. https://doi.org/10.1016/j.chemosphere.2014.07.031

  11. David M, Marigoudar SR, Patil VK, Halappa R (2012) Behavioral, morphological deformities and biomarkers of oxidative damage as indicators of sublethal cypermethrin intoxication on the tadpoles of D. melanostictus (Schneider, 1799). Pestic Biochem Physiol 103(2):127–134. https://doi.org/10.1016/j.pestbp.2012.04.009

  12. Devasagayam TPA, Tilak J, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804. https://doi.org/10.1016/S0300-483X(03)00149-5

  13. El-Demerdash FM (2007) Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicol in Vitro 21(3):392–397. https://doi.org/10.1016/J.TIV.2006.09.019

  14. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH (2004) Role of α-tocopherol and β-carotene in ameliorating the fenvalerate-induced changes in oxidative stress, hemato-biochemical parameters, and semen quality of male rats. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes 39(3):443–459. https://doi.org/10.1081/PFC-120035929

  15. Elliott M, Janes NF, Potter C (1978) The future of pyrethroids in insect control. Annu Rev Entomol 23:443–469. https://doi.org/10.1146/annurev.en.23.010178.002303

  16. Flohé L, Ötting F (1984) Superoxide dismutase assays. Methods in Enzymology 105:93–104. https://doi.org/10.1016/S0076-6879(84)05013-8

  17. Ghodageri MG, Pancharatna K (2011) Morphological and behavioral alterations induced by endocrine disrupters in amphibian tadpoles. Toxicol Environ Chem 93(10):2012–2021. https://doi.org/10.1080/02772248.2011.621595

  18. Harvey AJ, Kind KL, Thompson JG (2002) REDOX regulation of early embryo development. Reproduction 123(4):479–486. https://doi.org/10.1530/rep.0.1230479

  19. Hassaan MS, Goda AMA, Mahmoud SA, Tayel SI (2014) Protective effect of dietary vitamin E against fungicide copperoxychloride stress on Nile tilapia, Oreochromis niloticus (L.) fingerlings. Int Aquatic Res 6(1):58. https://doi.org/10.1007/s40071-014-0058-6

  20. Jin M, Zhang X, Wang L, Huang C, Zhang Y, Zhao M (2009) Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish. Aquat Toxicol 95(4):347–354. https://doi.org/10.1016/j.aquatox.2009.10.003

  21. Laskowski D (2002) Physical and chemical properties of pyrethroids. Environ Contam Toxicol 174:49

  22. Listed N (2013) Infographic: pesticide planet. Science 341(6147):730–731. https://doi.org/10.1126/science.341.6147.730

  23. López O, Hernández AF, Rodrigo L, Gil F, Pena G, Serrano JL, Parrón T, Villanueva E, Pla A (2007) Changes in antioxidant enzymes in humans with long-term exposure to pesticides. Toxicol Lett 171(3):146–153. https://doi.org/10.1016/j.toxlet.2007.05.004

  24. Madhubabu G, Yenugu S (2014) Allethrin induces oxidative stress, apoptosis and calcium release in rat testicular carcinoma cells (LC540). Toxicol In Vitro 28(8):1386–1395. https://doi.org/10.1016/j.tiv.2014.07.008

  25. Materna EJ, Rabeni CF, Lapoint TW (1995) Effects of the synthetic pyrethroid insecticide, esfenvalerate, on larval leopard frogs (spp.). Environ Toxicol Chem 14(4):613–622

  26. Mian LS, Mulla MS (1992) Effects of pyrethroid insecticides on nontarget invertebrates in aquatic ecosystems. J Agric Entomol 9(2):73–98

  27. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Garland Publishing, A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis

  28. Oros DR, Werner I (2005) Pyrethroid insecticides: an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin delta and Central Valley. White Paper for the Interagency Ecological Program. SFEI Contribution 415. San Francisco Estuary Institute, Oakland

  29. Pašková V, & Hilscherová K (2011) Teratogenicity and embryotoxicity in aquatic organisms after pesticide exposure and the role of oxidative stress. https://doi.org/10.1007/978-1-4419-8011-3,

  30. Pérez-Maldonado IN, Herrera C, Batres LE, González-Amaro R, Díaz-Barriga F, Yáñez L (2005) DDT-induced oxidative damage in human blood mononuclear cells. Environ Res 98(2):177–184. https://doi.org/10.1016/j.envres.2004.11.001

  31. Pype C, Verbueken E, Saad MA, Bars C, Van Ginneken CJ, Knapen D, Van Cruchten SJ (2017) Antioxidants reduce reactive oxygen species but not embryotoxicity in the metabolic Danio rerio test (mDarT). Reprod Toxicol 72:62–73. https://doi.org/10.1016/j.reprotox.2017.06.132

  32. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

  33. Shashikumar S, Rajini PS (2011) Alpha-tocopherol ameliorates cypermethrin-induced toxicity and oxidative stress in the nematode Caenorhabdtis elegans. Indian J Biochem Biophys 48(3):191–196

  34. Sies, H., & Stahl, W. (1995). Vitamins E and C, b-carotene, and other carotenoids as antioxidants. American Journal of Clinical Nutrition, 62(January 1996), 1315 S-1321 S. https://doi.org/10.1080/07315724.1999.10718880

  35. Singh U, Devaraj S, Jialal I (2005) Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr 25(1):151–174. https://doi.org/10.1146/annurev.nutr.24.012003.132446

  36. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191(308):990–1007. https://doi.org/10.1016/j.chemosphere.2017.10.115

  37. Tsaboula A, Papadakis EN, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E (2016) Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate. Environ Int 91:78–93. https://doi.org/10.1016/j.envint.2016.02.008

  38. Ullah S (2015) Ecotoxicology: a Review of pesticides induced toxicity in fish. Advances in Animal and Veterinary Sciences 3(1):40–57

  39. Verma RS, Mehta A, Srivastava N (2009) Comparative studies on chlorpyrifos and methyl parathion induced oxidative stress in different parts of rat brain: attenuation by antioxidant vitamins. Pestic Biochem Physiol 95(3):152–158. https://doi.org/10.1016/j.pestbp.2009.08.004

  40. Vryzas Z, Alexoudis C, Vassiliou G, Galanis K, Papadopoulou-Mourkidou E (2011) Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece. Ecotoxicol Environ Saf 74(2):174–181

  41. Xu P, Huang L (2017) Effects of α-cypermethrin enantiomers on the growth, biochemical parameters and bioaccumulation in Rana nigromaculata tadpoles of the anuran amphibians. Ecotoxicol Environ Saf 139:431–438. https://doi.org/10.1016/j.ecoenv.2017.02.015

  42. Ye J, Zhao M, Liu J, Liu W (2010) Enantioselectivity in environmental risk assessment of modern chiral pesticides. Environ Pollut 158(7):2371–2383. https://doi.org/10.1016/j.envpol.2010.03.014

  43. Yousef MI (2010) Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food Chem Toxicol 48(5):1152–1159. https://doi.org/10.1016/J.FCT.2010.02.002

  44. Yu L, Zhang X, Yuan J, Cao Q, Liu J, Zhu P, Shi H (2011) Teratogenic effects of triphenyltin on embryos of amphibian (Xenopus tropicalis): a phenotypic comparison with the retinoid X and retinoic acid receptor ligands. J Hazard Mater 192(3):1860–1868. https://doi.org/10.1016/j.jhazmat.2011.07.027

  45. Yu S, Wages MR, Cai Q, Maul JD, Cobb GP (2013) Lethal and sublethal effects of three insecticides on two developmental stages of xenopus laevis and comparison with other amphibians. Environ Toxicol Chem 32(9):2056–2064. https://doi.org/10.1002/etc.2280

  46. Zaidi SMKR, Banu N (2004) Antioxidant potential of vitamins A, e and C in modulating oxidative stress in rat brain. Clin Chim Acta 340(1–2):229–233. https://doi.org/10.1016/j.cccn.2003.11.003

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21407051), and Science and Technology Commission of Shanghai Municipality (Nos. 13ZR1453800, 17295810603, 18295810400).

Author information

Correspondence to Ying Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Chen, A., Niu, F. et al. Antioxidant vitamin E protects embryos of Xenopus tropicalis against lambda-cyhalothrin induced embryotoxicity. Environ Sci Pollut Res 26, 21629–21640 (2019). https://doi.org/10.1007/s11356-019-04651-y

Download citation

Keywords

  • Antioxidant
  • Embryotoxicity
  • Oxidative stress
  • Pyrethroid
  • Xenopus tropicalis