Thermodynamic and kinetic insights into plant-mediated detoxification of lead, cadmium, and chromium from aqueous solutions by chemically modified Salvia moorcroftiana leaves

  • Syed Muhammad SalmanEmail author
  • Asad Ali
  • Behramand Khan
  • Mehmood Iqbal
  • Muhammad Alamzeb
Research Article


Thermodynamic and kinetic aspects for the biosorptive removal of Pb, Cd, and Cr metals from water using Chemically Modified Leaves of Salvia moorcroftiana (CMSML) were determined. Different parameters including pH, temperature, metal’s initial concentration, biomass dosage, and contact time were optimized. Optimum biosorptions of Pb, Cd, and Cr were attained at pH values of 6.0, 7.0, and 3.0 respectively. Batch experiments showed maximum removal of both Pb and Cd at 40 °C and that of Cr at 30 °C. Biosorption capability of CMSML was observed to decrease with raising temperature. Optimal equilibrium times for Pb, Cd, and Cr uptake were 120, 60, and 120 min respectively. Based on the values of regression correlation coefficients (R2), the current data is explained better by applying Langmuir isotherms than the Freundlich model. Maximum biosorbent capabilities (qmax) for Pb, Cd, and Cr were approximately 270.27, 100.00, and 93.45 mg/g respectively. Thermodynamically, removal of all the three metal ions was shown to be exothermic and spontaneous.


Biosorption Heavy metals Batch experiments Chemical modification Salvia moorcroftiana Isotherms 



  1. Akar T, Tunali S (2006) Biosorption characteristics of Aspergillus flavus biomass for removal of Pb (II) and Cu (II) ions from an aqueous solution. Bioresour Technol 97:1780–1787CrossRefGoogle Scholar
  2. Aksu Z, Tezer S (2000) Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature. Process Biochem 36:431–439CrossRefGoogle Scholar
  3. Azizi S, Kamika I, Tekere M (2016) Evaluation of heavy metal removal from wastewater in a modified packed bed biofilm reactor. PLoS One 11:e0155462CrossRefGoogle Scholar
  4. Baral S, Das N, Ramulu T, Sahoo S, Das S, Chaudhury GR (2009) Removal of Cr (VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. J Hazard Mater 161:1427–1435CrossRefGoogle Scholar
  5. Barka N, Qourzal S, Assabbane A, Nounah A, Yhya A-I (2008) Adsorption of disperse blue SBL dye by synthesized poorly crystalline hydroxyapatite. J Environ Sci 20:1268–1272CrossRefGoogle Scholar
  6. Bedoui K, Bekri-Abbes I, Srasra E (2008) Removal of cadmium (II) from aqueous solution using pure smectite and Lewatite S 100: the effect of time and metal concentration. Desalination 223:269–273CrossRefGoogle Scholar
  7. Ben Salem Z, Laffray X, Al-Ashoor A, Ayadi H, Aleya L (2017) Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site. J Environ Sci (China) 54:56–68CrossRefGoogle Scholar
  8. Brown P, Gill S, Allen S (2000) Metal removal from wastewater using peat. Water Res 34:3907–3916CrossRefGoogle Scholar
  9. Chen S, Yue Q, Gao B, Li Q, Xu X, Fu K (2012) Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Bioresour Technol 113:114–120CrossRefGoogle Scholar
  10. Davis T, Volesky B, Vieira R (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278CrossRefGoogle Scholar
  11. Dearwent SM, MUMTAZ M, Godfrey G, Sinks T, Falk H (2006) Health effects of hazardous waste. Ann N Y Acad Sci 1076:439–448CrossRefGoogle Scholar
  12. Edris G, Alhamed Y, Alzahrani A (2014) Biosorption of cadmium and lead from aqueous solutions by Chlorella vulgaris biomass: equilibrium and kinetic study. Arab J Sci Eng 39:87–93CrossRefGoogle Scholar
  13. Farhan AM, Al-Dujaili AH, Awwad AM (2013) Equilibrium and kinetic studies of cadmium (II) and lead (II) ions biosorption onto Ficus carcia leaves. International Journal of Industrial Chemistry 4:24CrossRefGoogle Scholar
  14. Figueira M, Volesky B, Mathieu H (1999) Instrumental analysis study of iron species biosorption by Sargassum biomass. Environ Sci Technol 33:1840–1846CrossRefGoogle Scholar
  15. Fourest E, Roux J-C (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403CrossRefGoogle Scholar
  16. Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57:385–470Google Scholar
  17. Friis N, Myers-Keith P (1986) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 28:21–28CrossRefGoogle Scholar
  18. Gong R, Ding Y, Li M, Yang C, Liu H, Sun Y (2005) Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigments 64:187–192CrossRefGoogle Scholar
  19. Hayes RB (1988) Review of occupational epidemiology of chromium chemicals and respiratory cancer. Sci Total Environ 71:331–339CrossRefGoogle Scholar
  20. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar
  21. Ho Y-S, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742CrossRefGoogle Scholar
  22. Iakovleva E, Sillanpää M (2013) The use of low-cost adsorbents for wastewater purification in mining industries. Environ Sci Pollut Res 20:7878–7899CrossRefGoogle Scholar
  23. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182CrossRefGoogle Scholar
  24. Karthikeyan S, Balasubramanian R, Iyer C (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu (II) from aqueous solutions. Bioresour Technol 98:452–455CrossRefGoogle Scholar
  25. Kogej A, Likozar B, Pavko A (2010) Lead biosorption by self-immobilized Rhizopus nigricans pellets in a laboratory scale packed bed column: mathematical model and experiment. Food Technol Biotechnol 48Google Scholar
  26. Kozlowski CA, Walkowiak W (2002) Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes. Water Res 36:4870–4876CrossRefGoogle Scholar
  27. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga svenska vetenskapsakademiens. Handlingar 24:1–39Google Scholar
  28. Lalhruaitluanga H, Jayaram K, Prasad M, Kumar K (2010) Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study. J Hazard Mater 175:311–318CrossRefGoogle Scholar
  29. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  30. Leyva-Ramos R, Diaz-Flores PE, Aragon-Piña A, Mendoza-Barron J, Guerrero-Coronado RM (2005) Adsorption of cadmium (II) from an aqueous solution onto activated carbon cloth. Sep Sci Technol 40:2079–2094CrossRefGoogle Scholar
  31. Li Q, Wu S, Liu G, Liao X, Deng X, Sun D, Hu Y, Huang Y (2004) Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Sep Purif Technol 34:135–142CrossRefGoogle Scholar
  32. Liu Y, Sun X, Li B (2010) Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells. Carbohydr Polym 81:335–339CrossRefGoogle Scholar
  33. Malkoc E, Nuhoglu Y, Abali Y (2006) Cr (VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: prediction of breakthrough curves. Chem Eng J 119:61–68CrossRefGoogle Scholar
  34. Matheickal J, Yu Q (1997) Biosorption of lead (II) from aqueous solutions by Phellinus badius. Miner Eng 10:947–957CrossRefGoogle Scholar
  35. Matheickal JT, Yu Q (1999) Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69:223–229CrossRefGoogle Scholar
  36. Mattuschka B, Straube G (1993) Biosorption of metals by a waste biomass. J Chem Technol Biotechnol 58:57–63CrossRefGoogle Scholar
  37. Özer A, Özer D (2003) Comparative study of the biosorption of Pb (II), Ni (II) and Cr (VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100:219–229CrossRefGoogle Scholar
  38. Pagnanelli F, Esposito A, Toro L, Veglio F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37:627–633CrossRefGoogle Scholar
  39. Paschoalini AL, Savassi LA, Arantes FP, Rizzo E, Bazzoli N (2019) Heavy metals accumulation and endocrine disruption in Prochilodus argenteus from a polluted neotropical river. Ecotoxicol Environ Saf 169:539–550CrossRefGoogle Scholar
  40. Prasad M, Freitas H (2000) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ Pollut 110:277–283CrossRefGoogle Scholar
  41. Rahman MS, Sathasivam KV (2015) Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: the use of error functions for validation of isotherm and kinetics models. Biomed Res Int 2015:13Google Scholar
  42. Robinson T, Chandran B, Nigam P (2002) Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res 36:2824–2830CrossRefGoogle Scholar
  43. Saǧ Y, Özer D, Kutsal T (1995) A comparative study of the biosorption of lead (II) ions to Z. ramigera and R. arrhizus. Process Biochem 30:169–174CrossRefGoogle Scholar
  44. Saltalı K, Sarı A, Aydın M (2007) Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. J Hazard Mater 141:258–263CrossRefGoogle Scholar
  45. Sarı A, Tuzen M (2008) Biosorption of Pb (II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152:302–308CrossRefGoogle Scholar
  46. Sari A, Mendil D, Tuzen M, Soylak M (2008) Biosorption of Cd (II) and Cr (III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chem Eng J 144:1–9CrossRefGoogle Scholar
  47. Sawalha MF, Peralta-Videa JR, Romero-González J, Gardea-Torresdey JL (2006) Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. J Colloid Interface Sci 300:100–104CrossRefGoogle Scholar
  48. Say R, Denizli A, Arıca MY (2001) Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76:67–70CrossRefGoogle Scholar
  49. Sdiri A, Higashi T, Jamoussi F, Bouaziz S (2012) Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manag 93:245–253CrossRefGoogle Scholar
  50. Singh K, Singh A, Hasan S (2006) Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresour Technol 97:994–1001CrossRefGoogle Scholar
  51. Tunali S, Akar T, Özcan AS, Kiran I, Özcan A (2006) Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47:105–112CrossRefGoogle Scholar
  52. Tuzen M, Sari A, Mendil D, Soylak M (2009) Biosorptive removal of mercury (II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies. J Hazard Mater 169:263–270CrossRefGoogle Scholar
  53. Wang M, Liu R, Chen W, Peng C, Markert B (2018) Effects of urbanization on heavy metal accumulation in surface soils, Beijing. J Environ Sci 64:328–334CrossRefGoogle Scholar
  54. Yabanli M, Yozukmaz A, Sel F (2014) Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin Creek (Mugla, Turkey). Braz Arch Biol Technol 57:434–440CrossRefGoogle Scholar
  55. Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496CrossRefGoogle Scholar
  56. Yang L, Chen JP (2008) Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresour Technol 99:297–307CrossRefGoogle Scholar
  57. Yozukmaz A, Yabanli M, Sel F (2018) Heavy metal bioaccumulation in Enteromorpha intestinalis, (L.) Nees, a macrophytic algae: the example of Kadin Creek (Western Anatolia). Braz Arch Biol Technol 61Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Syed Muhammad Salman
    • 1
    Email author
  • Asad Ali
    • 1
    • 2
  • Behramand Khan
    • 1
  • Mehmood Iqbal
    • 3
  • Muhammad Alamzeb
    • 4
  1. 1.Department of ChemistryIslamia College UniversityPeshawarPakistan
  2. 2.Collaborative Innovation Center of Sustainable Energy MaterialsGuangxi UniversityNanningPeople’s Republic of China
  3. 3.Pakistan Council of Scientific and Industrial Research (PCSIR) Lab ComplexPeshawarPakistan
  4. 4.Department of Chemistry, Faculty of SciencesUniversity of KotliKotliPakistan

Personalised recommendations