Environmental Science and Pollution Research

, Volume 26, Issue 11, pp 11100–11112 | Cite as

Biosorption of nickel(II) and copper(II) ions from synthetic and real effluents by alginate-based biosorbent produced from seaweed Sargassum sp.

  • Carlos E. R. BarquilhaEmail author
  • Eneida S. Cossich
  • Célia R. G. Tavares
  • Edson A. da Silva
Research Article


In this study, the alginate-based biosorbent produced from seaweed Sargassum sp. was used in biosorption of Ni2+ and Cu2+ ions from synthetic solutions and real electroplating effluents. Biosorption kinetics, isotherms, pH effect, thermodynamic parameters, and sorption/desorption cycles were also evaluated. Kinetic studies show the sorption equilibrium can be obtained within 180 min for Ni2+ ions and 360 min for Cu2+ ions, and the adsorption kinetics data are well described by the pseudo-second order and diffusion in spherical adsorbents. Langmuir model can be well used to describe the biosorption isotherm data. The maximum sorption capacity (qmax) and Langmuir constant (b) were up to 1.147 mmol g−1 and 1.139 L mmol-1 for Ni2+ ions and 1.640 mmol g−1 and 4.645 L mmol-1 for Cu2+ ions. The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) showed that the biosorption of Ni2+ and Cu2+ ions are predominantly a chemical phenomenon of endothermic nature, favorable, and spontaneous at the temperature ranges of 293–313 K. Partial desorption of the Ni2+ and Cu2+ ions on the biosorbent was achieved using acidic and saline eluents, allowing the biosorbent to be used in new sorption/desorption cycles. EDX analysis suggests an ion exchange mechanism between calcium ions on the biosorbent and target metals. Biosorption of Ni2+ and Cu2+ from real electroplating effluents with high concentrations of light metals becomes highly competitive, decreasing the amount of Ni2+ and Cu2+ ions biosorbed due to the ionic strength effect.


Biosorption Metal ions Alginate Thermodynamic Desorption Real effluent 



The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.


  1. Al-Rub FAA, El-Naas MH, Benyahia F et al (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773. CrossRefGoogle Scholar
  2. Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: a comprehensive review. J Ind Eng Chem 56:35–44. CrossRefGoogle Scholar
  3. Barquilha CER, Cossich ES, Tavares CRG, Silva EA (2017) Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J Clean Prod 150:58–64. CrossRefGoogle Scholar
  4. Barquilha CER, Cossich ES, Tavares CRG, Silva EA (2019) Biosorption of nickel(II) and copper(II) ions by Sargassum sp. in nature and alginate extraction products. Bioresour Technol Rep 5:43–50. CrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2004) Model selection and multimodel inference. Springer New York, New York, NYCrossRefGoogle Scholar
  6. Cardoso SL, Costa CSD, Nishikawa E, da Silva MGC, Vieira MGA (2017) Biosorption of toxic metals using the alginate extraction residue from the brown algae Sargassum filipendula as a natural ion-exchanger. J Clean Prod 165:491–499. CrossRefGoogle Scholar
  7. Cechinel MAP, Mayer DA, Pozdniakova TA, Mazur LP, Boaventura RAR, de Souza AAU, de Souza SMAGU, Vilar VJP (2016) Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chem Eng J 286:1–15. CrossRefGoogle Scholar
  8. Chen D, Lewandowski Z, Roe F, Surapaneni P (1993) Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnol Bioeng 41:755–760. CrossRefGoogle Scholar
  9. Chen J, Tendeyong F, Yiacoumi S (1997) Equilibrium and kinetic studies of copper ion uptake by calcium alginate. Environ Sci Technol 31:1433–1439. CrossRefGoogle Scholar
  10. Chen JP, Hong L, Wu S, Wang L (2002) Elucidation of interactions between metal ions and ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. Langmuir 18:9413–9421. CrossRefGoogle Scholar
  11. Costa JF d SS, Vilar VJP, Botelho CMS et al (2010) Application of the Nernst–Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata. Water Res 44:3946–3958. CrossRefGoogle Scholar
  12. Da Silva EA, Cossich ES, Tavares CRG et al (2002) Modeling of copper(II) biosorption by marine alga Sargassum sp. in fixed-bed column. Process Biochem 38:791–799. CrossRefGoogle Scholar
  13. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330. CrossRefGoogle Scholar
  14. Deng S, Ting Y-P (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39:2167–2177. CrossRefGoogle Scholar
  15. Ely A, Baudu M, Kankou MOSO, Basly J-P (2011) Copper and nitrophenol removal by low cost alginate/Mauritanian clay composite beads. Chem Eng J 178:168–174. CrossRefGoogle Scholar
  16. Feng N, Guo X (2012) Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans Nonferrous Met Soc China 22:1224–1231. CrossRefGoogle Scholar
  17. Fourest E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30:277–282. CrossRefGoogle Scholar
  18. Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57:385–470. Google Scholar
  19. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28. CrossRefGoogle Scholar
  20. Gönen F (2012) Adsorption study on orange peel: removal of Ni(II) ions from aqueous solution. AFRICAN J Biotechnol 11:1250–1258. Google Scholar
  21. Gorgievski M, Božić D, Stanković V, Štrbac N, Šerbula S (2013) Kinetics, equilibrium and mechanism of Cu2+, Ni2+and Zn2+ions biosorption using wheat straw. Ecol Eng 58:113–122. CrossRefGoogle Scholar
  22. Guiza S (2017) Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecol Eng 99:134–140. CrossRefGoogle Scholar
  23. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. CrossRefGoogle Scholar
  24. Jaafari J, Yaghmaeian K (2019) Optimization of heavy metal biosorption onto freshwater algae (chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447–455. CrossRefGoogle Scholar
  25. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. CrossRefGoogle Scholar
  26. Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy 35:1675–1682. CrossRefGoogle Scholar
  27. Kleinübing SJ, da Silva EA, da Silva MGC, Guibal E (2011) Equilibrium of Cu(II) and Ni(II) biosorption by marine alga Sargassum filipendula in a dynamic system: competitiveness and selectivity. Bioresour Technol 102:4610–4617. CrossRefGoogle Scholar
  28. Kumar D, Pandey LK, Gaur JP (2016) Metal sorption by algal biomass: from batch to continuous system. Algal Res 18:95–109. CrossRefGoogle Scholar
  29. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. K Sven Vetenskapsakad Handl 24:1–39Google Scholar
  30. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. CrossRefGoogle Scholar
  31. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, New JerseyGoogle Scholar
  32. Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981–1985. CrossRefGoogle Scholar
  33. Marcus Y (1988) Ionic radii in aqueous solutions. Chem Rev 88:1475–1498. CrossRefGoogle Scholar
  34. Markou G, Mitrogiannis D, Çelekli A, Bozkurt H, Georgakakis D, Chrysikopoulos CV (2015) Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chem Eng J 259:806–813. CrossRefGoogle Scholar
  35. Martín-Lara MA, Blázquez G, Trujillo MC, Pérez A, Calero M (2014) New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. J Clean Prod 81:120–129. CrossRefGoogle Scholar
  36. Mata YN, Blázquez ML, Ballester A, González F, Muñoz JA (2009) Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J Hazard Mater 163:555–562. CrossRefGoogle Scholar
  37. McHugh DJ (1987) Production, properties and uses of alginates. Prod Util prod from Commer seaweeds. FAO Fish Tech Pap 288:58–115Google Scholar
  38. Milonjić SK (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serbian Chem Soc 72:1363–1367. CrossRefGoogle Scholar
  39. Naghipour D, Taghavi K, Jaafari J, Mahdavi Y, Ghanbari Ghozikali M, Ameri R, Jamshidi A, Hossein Mahvi A (2016) Statistical modeling and optimization of the phosphorus biosorption by modified Lemna minor from aqueous solution using response surface methodology (RSM). Desalin Water Treat 57:19431–19442. CrossRefGoogle Scholar
  40. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313CrossRefGoogle Scholar
  41. Oliveira RC, Hammer P, Guibal E, Taulemesse JM, Garcia O Jr (2014) Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: preliminary studies. Chem Eng J 239:381–391. CrossRefGoogle Scholar
  42. Öztürk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids Surfaces B Biointerfaces 34:105–111. CrossRefGoogle Scholar
  43. Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z (2010) Biosorption of nickel(II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J Hazard Mater 175:304–310. CrossRefGoogle Scholar
  44. Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, le Deit H, Kanellopoulos NK (2006) Heavy metal sorption by calcium alginate beads from Laminaria digitata. J Hazard Mater 137:1765–1772. CrossRefGoogle Scholar
  45. Papageorgiou SK, Kouvelos EP, Katsaros FK (2008) Calcium alginate beads from Laminaria digitata for the removal of Cu + 2 and Cd + 2 from dilute aqueous metal solutions. 224:293–306.
  46. Pozdniakova TA, Mazur LP, Boaventura RAR, Vilar VJP (2016) Brown macro-algae as natural cation exchangers for the treatment of zinc containing wastewaters generated in the galvanizing process. J Clean Prod 119:38–49. CrossRefGoogle Scholar
  47. Raval NP, Shah PU, Shah NK (2016) Adsorptive removal of nickel(II) ions from aqueous environment: a review. J Environ Manag 179:1–20. CrossRefGoogle Scholar
  48. Robalds A, Naja GM, Klavins M (2016) Highlighting inconsistencies regarding metal biosorption. J Hazard Mater 304:553–556. CrossRefGoogle Scholar
  49. Schiewer S, Volesky B (1997) Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environ Sci Technol 31:2478–2485. CrossRefGoogle Scholar
  50. Sheng PX, Ting Y-P, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141. CrossRefGoogle Scholar
  51. Singh R, Chadetrik R, Kumar R, Bishnoi K, Bhatia D, Kumar A, Bishnoi NR, Singh N (2010) Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling. J Hazard Mater 174:623–634. CrossRefGoogle Scholar
  52. Sips R (1950) On the structure of a catalyst surface. II. J Chem Phys 18:1024–1026. CrossRefGoogle Scholar
  53. Tran HN, You S-J, Chao H-P (2016) Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study. J Environ Chem Eng 4:2671–2682. CrossRefGoogle Scholar
  54. Veglio’ F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316. CrossRefGoogle Scholar
  55. Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manag 160:283–296. CrossRefGoogle Scholar
  56. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250. CrossRefGoogle Scholar
  57. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. CrossRefGoogle Scholar
  58. Wu M, Liang J, Tang J, Li G, Shan S, Guo Z, Deng L (2017) Decontamination of multiple heavy metals-containing effluents through microbial biotechnology. J Hazard Mater 337:189–197. CrossRefGoogle Scholar
  59. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831. CrossRefGoogle Scholar
  60. Zhou X, Zhou X (2014) The unit problem in the thermodynamic calculation of adsorption using the langmuir equation. Chem Eng Commun 201:1459–1467. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Carlos E. R. Barquilha
    • 1
    Email author
  • Eneida S. Cossich
    • 1
  • Célia R. G. Tavares
    • 1
  • Edson A. da Silva
    • 2
  1. 1.Department of Chemical EngineeringState University of MaringáMaringáBrazil
  2. 2.School of Chemical EngineeringState University of West ParanáToledoBrazil

Personalised recommendations