Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 11, pp 10457–10486 | Cite as

Recent electrochemical methods in electrochemical degradation of halogenated organics: a review

  • Meng Zhang
  • Qin Shi
  • Xiaozhe Song
  • Hui WangEmail author
  • Zhaoyong BianEmail author
Review Article

Abstract

Halogenated organics are widely used in modern industry, agriculture, and medicine, and their large-scale emissions have led to soil and water pollution. Electrochemical methods are attractive and promising techniques for wastewater treatment and have been developed for degradation of halogenated organic pollutants under mild conditions. Electrochemical techniques are classified according to main reaction pathways: (i) electrochemical reduction, in which cleavage of C-X (X = F, Cl, Br, I) bonds to release halide ions and produce non-halogenated and non-toxic organics and (ii) electrochemical oxidation, in which halogenated organics are degraded by electrogenerated oxidants. The electrode material is crucial to the degradation efficiency of an electrochemical process. Much research has therefore been devoted to developing appropriate electrode materials for practical applications. This paper reviews recent developments in electrode materials for electrochemical degradation of halogenated organics. And at the end of this paper, the characteristics of new combination methods, such as photocatalysis, nanofiltration, and the use of biochemical method, are discussed.

Keywords

Halogenated organics Electrochemical reduction Electrochemical oxidation Combined techniques Photoelectrochemistry Electrode materials 

Notes

Funding information

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2016ZCQ03), the Beijing Natural Science Foundation (No. 8172035), the National Key R&D Program of China (No. 2018YFC1802500), and the National Natural Science Foundation of China (No. 21872009).

References

  1. Abdi FF, Firet N, van de Krol R (2013) Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. Chemcatchem 5:490–496.  https://doi.org/10.1002/cctc.201200472 CrossRefGoogle Scholar
  2. Abdi FF, Dabirian A, Dam B, van de Krol R (2014) Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core-shell nanoparticles. Phys Chem Chem Phys 16:15272–15277.  https://doi.org/10.1039/C4cp01583e CrossRefGoogle Scholar
  3. Albo Y, Shandalov E, Hayoun L, Zilbermann I, Maimon E, Meyerstein D (2017) Homogeneous and heterogeneous electrocatalytic reduction of halo-organic compounds by (NiIILi)2+(Li〓tetraaza-macrocyclic ligand) in aqueous solutions. Inorg Chim Acta 466:502–509.  https://doi.org/10.1016/j.ica.2017.06.066 CrossRefGoogle Scholar
  4. Antony RP, Bassi PS, Abdi FF, Chiam SY, Ren Y, Barber J, Loo JSC, Wong LH (2016) Electrospun Mo-BiVO4 for efficient photoelectrochemical water oxidation: direct evidence of improved hole diffusion length and charge separation. Electrochim Acta 211:173–182.  https://doi.org/10.1016/j.electacta.2016.06.008 CrossRefGoogle Scholar
  5. Atashgahi S, Haggblom MM, Smidt H (2018) Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environ Microbiol 20:934–948.  https://doi.org/10.1111/1462-2920.14016 CrossRefGoogle Scholar
  6. Aznar-Alemany Ò, Trabalón L, Jacobs S, Barbosa VL, Tejedor MF, Granby K, Kwadijk C, Cunha SC, Ferrari F, Vandermeersch G, Sioen I, Verbeke W, Vilavert L, Domingo JL, Eljarrat E, Barceló D (2017) Occurrence of halogenated flame retardants in commercial seafood species available in European markets. Food Chem Toxicol 104:35–47.  https://doi.org/10.1016/j.fct.2016.12.034 CrossRefGoogle Scholar
  7. Bach A, Shemer H, Semiat R (2010) Kinetics of phenol mineralization by Fenton-like oxidation. Desalination 264:188–192.  https://doi.org/10.1016/j.desal.2010.04.011 CrossRefGoogle Scholar
  8. Bera A, Hajra P, Shyamal S, Mandal H, Sariket D, Kundu S, Mandal S, Bhattacharya C (2018) Solvent effects on the photoelectrochemical water oxidation behaviour of TiO2 semiconductors. Mater Today: Proc 5:10161–10168.  https://doi.org/10.1016/j.matpr.2017.11.014 CrossRefGoogle Scholar
  9. Beyer A, Biziuk M (2009) Environmental fate and global distribution of polychlorinated biphenyls. Rev Environ Contam T 201:137–158.  https://doi.org/10.1007/978-1-4419-0032-6 CrossRefGoogle Scholar
  10. Bian ZY, Bian Y, Wang H, Ding AZ (2014a) Synthesis of Pd nanoparticles decorated with graphene and their application in electrocatalytic degradation of 4-chlorophenol. J Nanosci Nanotechno 14:7279–7285.  https://doi.org/10.1166/jnn.2014.8949 CrossRefGoogle Scholar
  11. Bian ZY, Zhu YQ, Zhang JX, Ding AZ, Wang H (2014b) Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO4 photocatalysts. Chemosphere 117:527–531.  https://doi.org/10.1016/j.chemosphere.2014.09.017 CrossRefGoogle Scholar
  12. Borras N, Arias C, Oliver R, Brillas E (2013) Anodic oxidation, electro-Fenton and photoelectro-Fenton degradation of cyanazine using a boron-doped diamond anode and an oxygen-diffusion cathode. J Electroanal Chem 689:158–167.  https://doi.org/10.1016/j.jelechem.2012.11.012 CrossRefGoogle Scholar
  13. Brillas E, Martínez-Huitle CA (2014) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166-167:603–643.  https://doi.org/10.1016/j.apcatb.2014.11.016 CrossRefGoogle Scholar
  14. Brillas E, Banos MA, Skoumal M, Cabot PL, Garrido JA, Rodriguez RM (2007) Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes. Chemosphere 68:199–209.  https://doi.org/10.1016/S0022-0728(02)01271-8 CrossRefGoogle Scholar
  15. Bujes-Garrido J, Izquierdo-Bote D, Heras A, Colina A, Arcos-Martinez MJ (2018) Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Anal Chim Acta 1012:42–48.  https://doi.org/10.1016/j.aca.2018.01.063 CrossRefGoogle Scholar
  16. Burgos-Castillo RC, Sires I, Sillanpaa M, Brillas E (2018) Application of electrochemical advanced oxidation to bisphenol A degradation in water. Effect of sulfate and chloride ions. Chemosphere 194:812–820.  https://doi.org/10.1016/j.chemosphere.2017.12.014 CrossRefGoogle Scholar
  17. Cagnetta G, Robertson J, Huang J, Zhang K, Yu G (2016) Mechanochemical destruction of halogenated organic pollutants: a critical review. J Hazard Mater 313:85–102.  https://doi.org/10.1016/j.jhazmat.2016.03.076 CrossRefGoogle Scholar
  18. Candu N, Dhakshinamoorthy A, Apostol N, Teodorescu C, Corma A, Garcia H, Parvulescu VI (2017) Oriented Au nanoplatelets on graphene promote Suzuki-Miyaura coupling with higher efficiency and different reactivity pattern than supported palladium. J Catal 352:59–66.  https://doi.org/10.1016/j.jcat.2017.04.034 CrossRefGoogle Scholar
  19. Cao JL, Zhao HY, Cao FH, Zhang JQ, Cao CN (2009) Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes. Electrochim Acta 54:2595–2602.  https://doi.org/10.1016/j.electacta.2008.10.049 CrossRefGoogle Scholar
  20. Cao D, Wang Y, Qiao M, Zhao X (2018) Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag3PO4/BiVO4 electrode with low bias. J Catal 360:240–249.  https://doi.org/10.1016/j.jcat.2018.01.017 CrossRefGoogle Scholar
  21. Chang JF, Li ST, Feng LG, Qin XJ, Shao GJ (2014a) Effect of carbon material on Pd catalyst for formic acid electrooxidation reaction. J Power Sources 266:481–487.  https://doi.org/10.1016/j.jpowsour.2014.05.043 CrossRefGoogle Scholar
  22. Chang LM, Zhou Y, Duan XY, Liu W, Xu DD (2014b) Preparation and characterization of carbon nanotube and Bi co-doped PbO2 electrode. J Taiwan Inst Chem E 45:1338–1346.  https://doi.org/10.1016/j.jtice.2014.03.004 CrossRefGoogle Scholar
  23. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41.  https://doi.org/10.1016/j.seppur.2003.10.006 CrossRefGoogle Scholar
  24. Chen S, Qin Z, Quan X, Zhang Y, Zhao H (2010) Electrocatalytic dechlorination of 2,4,5-trichlorobiphenyl using an aligned carbon nanotubes electrode deposited with palladium nanoparticles. Chin Sci Bull 55:358–364.  https://doi.org/10.1007/s11434-010-0003-z CrossRefGoogle Scholar
  25. Chen YL, Xiong L, Song XN, Wang WK, Huang YX, Yu HQ (2015) Electrocatalytic hydrodehalogenation of atrazine in aqueous solution by Cu@Pd/Ti catalyst. Chemosphere 125:57–63.  https://doi.org/10.1016/j.chemosphere.2015.01.052 CrossRefGoogle Scholar
  26. Chen S, Chu W, Wei H, Zhao H, Xu B, Gao N, Yin D (2018) Reductive dechlorination of haloacetamides in drinking water by Cu/Fe bimetal. Sep Purif Technol 203:226–232.  https://doi.org/10.1016/j.seppur.2018.04.048 CrossRefGoogle Scholar
  27. Cheng SA, Fung WK, Chan KY, Shen PK (2003) Optimizing electron spin resonance detection of hydroxyl radical in water. Chemosphere 52:1797–1805.  https://doi.org/10.1016/S0045-6535(03)00369-2 CrossRefGoogle Scholar
  28. Cho HW, Liao KL, Yang JS, Wu JJ (2018) Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film. Appl Surf Sci 440:125–132.  https://doi.org/10.1016/j.apsusc.2018.01.139 CrossRefGoogle Scholar
  29. Choi J, Sudhagar P, Kim JH, Kwon J, Kim J, Terashima C, Fujishima A, Song T, Paik U (2017) WO3/W:BiVO4/BiVO4 graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Phys Chem Chem Phys 19:4648–4655.  https://doi.org/10.1039/c6cp08199a CrossRefGoogle Scholar
  30. Coddou C, Rodrigo S, Hevia MJ, Stojilkovic SS (2019) A characterization of the antagonist actions of 5-BDBD at the rat P2X4 receptor. Neurosci Lett 690:219–224.  https://doi.org/10.1016/j.neulet.2018.10.047 CrossRefGoogle Scholar
  31. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment. Electrochem Acta 39:1857–1862.  https://doi.org/10.1016/0013-4686(94)85175-1 CrossRefGoogle Scholar
  32. Cotillas S, Medeiros de Araújo D, Llanos J, Sáez C, Cañizares P, Rodrigo MA (2016) Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. J Hazard Mater 319:93–101.  https://doi.org/10.1016/j.jhazmat.2016.01.050 CrossRefGoogle Scholar
  33. Cotillas S, Cañizares L, Muñoz M, Sáez C, Cañizares P, Rodrigo MA (2017) Is it really important the addition of salts for the electrolysis of soil washing effluents? Electrochim Acta 246:372–379.  https://doi.org/10.1016/j.electacta.2017.06.016 CrossRefGoogle Scholar
  34. Cotillas S, Clematis D, Cañizares P, Carpanese MP, Rodrigo MA, Panizza M (2018a) Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes. Chemosphere 199:445–452.  https://doi.org/10.1016/j.chemosphere.2018.02.001 CrossRefGoogle Scholar
  35. Cotillas S, Lacasa E, Sáez C, Cañizares P, Rodrigo MA (2018b) Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. Water Res 128:383–392.  https://doi.org/10.1016/j.watres.2017.10.072 CrossRefGoogle Scholar
  36. Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, Herzke D, de Wit CA (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37:532–556.  https://doi.org/10.1016/j.envint.2010.11.007 CrossRefGoogle Scholar
  37. Cui X, Li H, Yuan M, Yang J, Xu D, Li Z, Yu G, Hou Y, Dong Z (2017) Facile preparation of fluffy N-doped carbon modified with Ag nanoparticles as a highly active and reusable catalyst for catalytic reduction of nitroarenes. J Colloid Interface Sci 506:524–531.  https://doi.org/10.1016/j.jcis.2017.07.074 CrossRefGoogle Scholar
  38. Deng D, Deng F, Tang B, Zhang J, Liu J (2017) Electrocatalytic reduction of low-concentration thiamphenicol and florfenicol in wastewater with multi-walled carbon nanotubes modified electrode. J Hazard Mater 332:168–175.  https://doi.org/10.1016/j.jhazmat.2017.03.013 CrossRefGoogle Scholar
  39. Diaz E, Mohedano AF, Casas JA, Calvo L, Gilarranz MA, Rodriguez JJ (2011) Comparison of activated carbon-supported Pd and Rh catalysts for aqueous-phase hydrodechlorination. Appl Catal B Environ 106:469–475.  https://doi.org/10.1016/j.apcatb.2011.06.005 CrossRefGoogle Scholar
  40. Ding CM, Shi JY, Wang DG, Wang ZJ, Wang N, Liu GJ, Xiong FQ, Li C (2013) Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 15:4589–4595.  https://doi.org/10.1039/C3cp50295c CrossRefGoogle Scholar
  41. Dominguez CM, Oturan N, Romero A, Santos A, Oturan MA (2018a) Removal of lindane wastes by advanced electrochemical oxidation. Chemosphere 202:400–409.  https://doi.org/10.1016/j.chemosphere.2018.03.124 CrossRefGoogle Scholar
  42. Dominguez CM, Oturan N, Romero A, Santos A, Oturan MA (2018b) Removal of organochlorine pesticides from lindane production wastes by electrochemical oxidation. Environ Sci Pollut R.  https://doi.org/10.1007/s11356-018-1425-4
  43. Dong Z, Ding D, Li T, Ning C (2018) Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting. Appl Surf Sci 443:321–328  https://doi.org/10.1016/j.apsusc.2018.03.031 CrossRefGoogle Scholar
  44. Dos Santos EV, Sáez C, Cañizares P, da Silva DR, Martínez-Huitle CA, Rodrigo MA (2017) Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches. Chem Eng J 310:581–588.  https://doi.org/10.1016/j.cej.2016.05.015 CrossRefGoogle Scholar
  45. Duan XY, Ma F, Yuan ZX, Chang LM, Jin XT (2012) Comparative studies on the electro-catalytic oxidation performance of surfactant-carbon nanotube-modified PbO2 electrodes. J Electroanal Chem 677:90–100.  https://doi.org/10.1016/j.jelechem.2012.05.012 CrossRefGoogle Scholar
  46. Duan XY, Tian LF, Liu W, Chang LM (2013) Study on electrochemical oxidation of 4-chlorophenol on a vitreous carbon electrode using cyclic voltammetry. Electrochim Acta 94:192–197.  https://doi.org/10.1016/j.electacta.2013.01.151 CrossRefGoogle Scholar
  47. Duan X, Li J, Liu W, Chang L, Yang C (2016) Fabrication and characterization of a novel PbO2 electrode with a CNT interlayer. RSC Adv 6:28927–28936.  https://doi.org/10.1039/c6ra02857h CrossRefGoogle Scholar
  48. Duan X, Zhao C, Liu W, Zhao X, Chang L (2017) Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol. Electrochim Acta 240:424–436.  https://doi.org/10.1016/j.electacta.2017.04.114 CrossRefGoogle Scholar
  49. Durante C, PerazzoloVA IA, Favaro M, Granozzi G, Gennaro A (2014) Electrochemical activation of carbon-halogen bonds: electrocatalysis at palladium-copper nanoparticles. Chemelectrochem 1:1370–1381.  https://doi.org/10.1002/celc.201402032 CrossRefGoogle Scholar
  50. Fernandes AR, Mortimer D, Holmes M, Rose M, Zhihua L, Huang X, Smith F, Panton S, Marshall L (2018) Occurrence and spatial distribution of chemical contaminants in edible fish species collected from UK and proximate marine waters. Environ Int 114:219–230.  https://doi.org/10.1016/j.envint.2018.02.047 CrossRefGoogle Scholar
  51. Fernandez F, Berrios C, Garrido-Ramirez E, Escalona N, Gutierrez C, Ureta-Zanartu MS (2014) Electrooxidation of 2-chlorophenol and 2,4,6-chlorophenol on glassy carbon electrodes modified with graphite-zeolite mixtures. J Appl Electrochem 44:1295–1306.  https://doi.org/10.1007/s10800-014-0763-2 CrossRefGoogle Scholar
  52. Fernández-Domene RM, Sánchez-Tovar R, Lucas-granados B, Muñoz-Portero MJ, García-Antón J (2018) Elimination of pesticide atrazine by photoelectrocatalysis using a photoanode based on WO3 nanosheets. Chem Eng J 350:1114–1124.  https://doi.org/10.1016/j.cej.2018.06.015 CrossRefGoogle Scholar
  53. Flores N, Sharif F, Yasri N, Brillas E, Sires I, Roberts EPL (2018) Removal of tyrosol from water by adsorption on carbonaceous materials and electrochemical advanced oxidation processes. Chemosphere 201:807–815.  https://doi.org/10.1016/j.chemosphere.2018.03.028 CrossRefGoogle Scholar
  54. Fontmorin JM, Siguie J, Fourcade F, Geneste F, Floner D, Soutrel I, Amrane A (2014) Combined electrochemical treatment/biological process for the removal of a commercial herbicide solution, U46D. Sep Purif Technol 132:704–711.  https://doi.org/10.1016/j.seppur.2014.06.024 CrossRefGoogle Scholar
  55. Galia A, Lanzalaco S, Sabatino MA, Dispenza C, Scialdone O, Sirés I (2016) Crosslinking of poly (vinylpyrrolidone) activated by electrogenerated hydroxyl radicals: a first step towards a simple and cheap synthetic route of nanogel vectors. Electrochem Commun 62:64–68.  https://doi.org/10.1016/j.elecom.2015.12.005 CrossRefGoogle Scholar
  56. Garcia O, Isarain-Chavez E, Garcia-Segura S, Brillas E, Peralta-Hernandez JM (2013) Degradation of 2,4-dichlorophenoxyacetic acid by electro-oxidation and electro-Fenton/BDD processes using a pre-pilot plant. Electrocatalysis 4:224–234.  https://doi.org/10.1007/s12678-013-0135-4 CrossRefGoogle Scholar
  57. Garcia O, Isarain-Chavez E, El-Ghenymy A, Brillas E, Peralta-Hernandez JM (2014) Degradation of 2,4-D herbicide in a recirculation flow plant with a Pt/air-diffusion and a BDD/BDD cell by electrochemical oxidation and electro-Fenton process. J Electroanal Chem 728:1–9.  https://doi.org/10.1016/j.jelechem.2014.06.019 CrossRefGoogle Scholar
  58. Gargouri B, Gargouri OD, Khmakhem I, Ammar S, Abdelhedi R, Bouaziz M (2017) Chemical composition and direct electrochemical oxidation of table olive processing wastewater using high oxidation power anodes. Chemosphere 166:363–371.  https://doi.org/10.1016/j.chemosphere.2016.09.080 CrossRefGoogle Scholar
  59. Garza-Campos BR, Guzman-Mar JL, Reyes LH, Brillas E, Hernandez-Ramirez A, Ruiz-Ruiz EJ (2014) Coupling of solar photoelectro-Fenton with a BDD anode and solar heterogeneous photocatalysis for the mineralization of the herbicide atrazine. Chemosphere 97:26–33.  https://doi.org/10.1016/j.chemosphere.2013.10.044 CrossRefGoogle Scholar
  60. Ge Y, Bai H, Li C, Guan P, Wu L, Xu D, Hong Y, Fan W, Shi W (2017) Controllable TiO2 heterostructure with carbon hybrid materials for enhanced photoelectrochemical performance. New J Chem 41:3460–3465.  https://doi.org/10.1039/c6nj03922g CrossRefGoogle Scholar
  61. Glazer L, Wells CN, Drastal M, Odamah KA, Galat RE, Behl M, Levin ED (2018) Developmental exposure to low concentrations of two brominated flame retardants, BDE-47 and BDE-99, causes life-long behavioral alterations in zebrafish. NeuroToxicology 66:221–232.  https://doi.org/10.1016/j.neuro.2017.09.007 CrossRefGoogle Scholar
  62. Gong X, Yang J, Feng X, Yang X, Zheng H, Wu Z, Hu Q (2018) Removal of thiophene in air stream by absorption combined with electrochemical oxidation. J Taiwan Inst Chem E 84:173–178.  https://doi.org/10.1016/j.jtice.2018.01.022 CrossRefGoogle Scholar
  63. Gonzalez T, Salazar R, Marco JF, Gutierrez C, Ureta-Zanartu MS (2013) Electrooxidation of 2,4,6-trichlorophenol on glassy carbon electrodes modified with composite Ni (OH)2-Co (OH)2 films. J Chil Chem Soc 58:2043–2047CrossRefGoogle Scholar
  64. Gutkowski R, Khare C, Conzuelo F, Kayran YU, Ludwig A, Schuhmann W (2017) Unraveling compositional effects on the light-induced oxygen evolution in Bi(V-Mo-X)O4 material libraries. Energy Environ Sci 10:1213–1221.  https://doi.org/10.1039/C7EE00287D CrossRefGoogle Scholar
  65. Guzman-Duque FL, Palma-Goyes RE, Gonzalez I, Periuela G, Torres-Palma RA (2014) Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. J Hazard Mater 278:221–226.  https://doi.org/10.1016/j.jhazmat.2014.05.076 CrossRefGoogle Scholar
  66. Hailu SL, Nair BU, Redi-Abshiro M, Diaz I, Aravindhan R, Tessema M (2016) Oxidation of 4-chloro-3-methylphenol using zeolite Y-encapsulated iron (III)-, nickel (II)-, and copper (II)-N,N‘-disalicylidene-1, 2-phenylenediamine complexes. Chinese J Catal 37:135–145.  https://doi.org/10.1016/s1872-2067(15)61010-5 CrossRefGoogle Scholar
  67. He C, Li XZ, Graham N, Wang Y (2006) Preparation of MATO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application. Appl Catal A Gen 305:54–63.  https://doi.org/10.1016/j.apcata.2006.02.051 CrossRefGoogle Scholar
  68. He Z, Sun J, Wei J, Wang Q, Huang C, Chen J, Song S (2013) Effect of silver or copper middle layer on the performance of palladium modified nickel foam electrodes in the 2-chlorobiphenyl dechlorination. J Hazard Mater 250:181–189.  https://doi.org/10.1016/j.jhazmat.2013.02.001 CrossRefGoogle Scholar
  69. Hirvonen A, Trapido M, Hentunen J, Tarhanen J (2000) Formation of hydroxylated and dimeric intermediates during oxidation of chlorinated phenols in aqueous solution. Chemosphere 41:1211–1218.  https://doi.org/10.1016/S0045-6535(99)00548-2 CrossRefGoogle Scholar
  70. Huang B, Lsse AA, Durante C, Wei C, Gennaro A (2012) Electrocatalytic properties of transition metals toward reductive dechlorination of polychloroethanes. Electrochim Acta 70:50–61.  https://doi.org/10.1016/j.electacta.2012.03.009 CrossRefGoogle Scholar
  71. Huang C-C, Lo S-L, Lien H-L (2015) Vitamin B12-mediated hydrodechlorination of dichloromethane by bimetallic Cu/Al particles. Chem Eng J 273:413–420.  https://doi.org/10.1016/j.cej.2015.03.064 CrossRefGoogle Scholar
  72. Huang L-Z, Pedersen SU, Bjerglund ET, Lamagni P, Glasius M, Hansen HCB, Daasbjerg K (2017) Hierarchical MoS2 nanosheets on flexible carbon felt as an efficient flow-through electrode for dechlorination. Environ Sci-Nano 4:2286–2296.  https://doi.org/10.1039/c7en00925a CrossRefGoogle Scholar
  73. Huang G, Wang M, Hu Y, Cheng J, Lv S, Yang K (2018) Reductive degradation of 2,2′,4,4′-tretrabromodiphenyl ether with PAC-Pd/Fe nanoparticles: effects of Pd loading, initial pH and HA, and degradation pathway. Chem Eng J 334:1252–1259.  https://doi.org/10.1016/j.cej.2017.11.077 CrossRefGoogle Scholar
  74. Isse AA, Huang BB, Durante C, Gennaro A (2012) Electrocatalytic dechlorination of volatile organic compounds at a copper cathode. Part I: polychloromethanes. Appl Catal B Environ 126:347–354.  https://doi.org/10.1016/j.apcatb.2012.07.004 CrossRefGoogle Scholar
  75. Jia D, Sun SP, Wu Z, Wang N, Jin Y, Dong W, Chen XD, Ke Q (2018) TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: sand columns demonstration. J Hazard Mater 346:124–132.  https://doi.org/10.1016/j.jhazmat.2017.12.031 CrossRefGoogle Scholar
  76. Jiang J, Zhang X, Sun P, Zhang L (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115:20555–20564.  https://doi.org/10.1021/jp205925z CrossRefGoogle Scholar
  77. Jiang X, Shen J, Han Y, Lou S, Han W, Sun X, Li J, Mu Y, Wang L (2016) Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: a comprehensive study. Water Res 88:257–265.  https://doi.org/10.1016/j.watres.2015.10.023 CrossRefGoogle Scholar
  78. Jiang J, Li W, Zhang X, Liu J, Zhu X (2018a) A new approach to controlling halogenated DBPs by GAC adsorption of aromatic intermediates from chlorine disinfection: effects of bromide and contact time. Sep Purif Technol 203:260–267.  https://doi.org/10.1016/j.seppur.2018.04.050 CrossRefGoogle Scholar
  79. Jiang J, Zhao H, Sun S, Wang Y, Liu S, Xie Q, Li X (2018b) Occurrence and profiles of halogenated phenols, polybrominated diphenyl ethers and hydroxylated polybrominated diphenyl ethers in the effluents of waste water treatment plants around Huang-Bo Sea, North China. Sci Total Environ 622-623:1–7.  https://doi.org/10.1016/j.scitotenv.2017.11.323 CrossRefGoogle Scholar
  80. Jin M, Ma HY (2013) Electrochemical reductive dechlorination of trichloroacetic acid on porous Ag-Pd thin foam. Russ J Electrochem 49:1081–1085.  https://doi.org/10.1134/S1023193513110153 CrossRefGoogle Scholar
  81. Ju P, Wang P, Li B, Fan H, Ai SY, Zhang D, Wang Y (2014) A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem Eng J 236:430–437.  https://doi.org/10.1016/j.cej.2013.10.001 CrossRefGoogle Scholar
  82. Kaczorek E, Smułek W, Zdarta A, Sawczuk A, Zgoła-Grześkowiak A (2016) Influence of saponins on the biodegradation of halogenated phenols. Ecotox Environ Safety 131:127–134.  https://doi.org/10.1016/j.ecoenv.2016.05.015 CrossRefGoogle Scholar
  83. Khene S, Nyokong T (2012) Single walled carbon nanotubes functionalized with nickel phthalocyanines: effects of point of substitution and nature of functionalization on the electro-oxidation of 4-chlorophenol. J Porphyr Phthalocya 16:130–139.  https://doi.org/10.1142/S1088424611004439 CrossRefGoogle Scholar
  84. Kim ES, Kang HJ, Magesh G, Kim JY, Jang JW, Lee JS (2014a) Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl Mater Inter 6:17762–17769.  https://doi.org/10.1021/Am504283t CrossRefGoogle Scholar
  85. Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH, Lee J, Lee JS (2014b) Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. J Catal 317:126–134.  https://doi.org/10.1016/j.jcat.2014.06.015 CrossRefGoogle Scholar
  86. Kim JD, Choi MY, Choi HC (2016) Catalyst activity of carbon nanotube supported Pd catalysts for the hydrogenation of nitroarenes. Mater Chem Phys 173:404–411.  https://doi.org/10.1016/j.matchemphys.2016.02.030 CrossRefGoogle Scholar
  87. Kim SR, Ali I, Kim JO (2017) Electrochemical synthesis of co-doped RGO-Bi-TiO2 nanotube composite: enhanced activity under visible light. J Ind Eng Chem 54:316–323.  https://doi.org/10.1016/j.jiec.2017.06.006 CrossRefGoogle Scholar
  88. Klidi N, Clematis D, Carpanese MP, Gadri A, Ammar S, Panizza M (2019) Electrochemical oxidation of crystal violet using a BDD anode with a solid polymer electrolyte. Sep Purif Technol 208:178–183.  https://doi.org/10.1016/j.seppur.2018.03.042 CrossRefGoogle Scholar
  89. Laine DF, Cheng IF (2007) The destruction of organic pollutants under mild reaction conditions: a review. Microchem J 85:183–193.  https://doi.org/10.1016/j.microc.2006.07.002 CrossRefGoogle Scholar
  90. Lakshminarasimhan N, Bokare AD, Choi WY (2012) Effect of agglomerated state in mesoporous TiO2 on the morphology of photodeposited Pt and photocatalytic activity. J Phys Chem C 116:17531–17539.  https://doi.org/10.1021/Jp303118q CrossRefGoogle Scholar
  91. Lan Y, Coetsier C, Causserand C, Groenen Serrano K (2017) On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochim Acta 231:309–318.  https://doi.org/10.1016/j.electacta.2017.01.160 CrossRefGoogle Scholar
  92. Li J, Liu H, Cheng X, Xin Y, Xu W, Ma Z, Ma J, Ren N, Li Q (2012) Stability of palladium-polypyrrole-foam nickel electrode and its electrocatalytic hydrodechlorination for dichlorophenol isomers. Ind Eng Chem Res 51:15557–15563.  https://doi.org/10.1021/ie3021522 CrossRefGoogle Scholar
  93. Li P, Jin J, Wang Y, Hu J, Xu M, Sun Y, Ma Y (2017) Concentrations of organophosphorus, polybromobenzene, and polybrominated diphenyl ether flame retardants in human serum, and relationships between concentrations and donor ages. Chemosphere 171:654–660.  https://doi.org/10.1016/j.chemosphere.2016.12.126 CrossRefGoogle Scholar
  94. Li P, Xu C, Zhang W, Huang L (2018) The important role of polyvinylpyrrolidone and Cu on enhancing dechlorination of 2,4-dichlorophenol by Cu/Fe nanoparticles: performance and mechanism study. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2017.11.084
  95. Lin H, Zhu L, Xu X, Zang L, Kong Y (2011) Reductive transformation and dichlorination of chloronitrobenzenes in UASB reactor enhanced with zero-valent iron addition. J Chem Technol Biotechnol 86:290–298.  https://doi.org/10.1002/jctb.2520 CrossRefGoogle Scholar
  96. Liu YY, Wang ZY, Huang BB, Zhang XY, Qin XY, Dai Y (2010) Enhanced photocatalytic degradation of organic pollutants over basic bismuth (III) nitrate/BiVO4 composite. J Colloid Interf Sci 348:211–215.  https://doi.org/10.1016/j.jcis.2010.04.019 CrossRefGoogle Scholar
  97. Liu RH, Liu YT, Liu CB, Luo SL, Teng YR, Yang LX, Yang RB, Cai QY (2011) Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays. J Alloy Compd 509:2434–2440.  https://doi.org/10.1016/j.jallcom.2010.11.040 CrossRefGoogle Scholar
  98. Liu HS, Yu SL, Shen TD, Tong SP, Ma CN (2014) Preparation of a high-performance composite PbO2 electrode from a new bath for p-chlorophenol oxidation. Sep Purif Technol 132:27–32.  https://doi.org/10.1016/j.seppur.2014.04.053 CrossRefGoogle Scholar
  99. Liu CL, Cai Q, Zhang L, Cui LF, Fang XY, Kang SF, Wang YG (2017a) Tryptone based synthesis of TiO2@graphite carbon heterojunction with enhanced photoreduction activity under visible light. Catal Commun 99:71–74.  https://doi.org/10.1016/j.catcom.2017.04.040 CrossRefGoogle Scholar
  100. Liu D, Tian R, Wang J, Nie E, Piao X, Li X, Sun Z (2017b) Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 185:574–581.  https://doi.org/10.1016/j.chemosphere.2017.07.071 CrossRefGoogle Scholar
  101. Liu C, Wang F, Zhu S, Xu Y, Liang Q, Chen Z (2018a) Controlled charge-dynamics in cobalt-doped TiO2 nanowire photoanodes for enhanced photoelectrochemical water splitting. J Colloid Interf Sci 530:403–411.  https://doi.org/10.1016/j.jcis.2018.07.003 CrossRefGoogle Scholar
  102. Liu H, Yu Q, Fu H, Wan Y, Qu X, Xu Z, Yin D, Zheng S (2018b) Pt supported on ordered microporous carbon as highly active catalyst for catalytic hydrodeiodination of iodinated X-ray contrast media. Appl Catal B Environ 222:167–175.  https://doi.org/10.1016/j.apcatb.2017.10.006 CrossRefGoogle Scholar
  103. Liu R, Tian C, Hu C, Qi Z, Liu H, Qu J (2018c) Effects of bromide on the formation and transformation of disinfection by-products during chlorination and chloramination. Sci Total Environ 625:252–261.  https://doi.org/10.1016/j.scitotenv.2017.12.253 CrossRefGoogle Scholar
  104. Ltaief AH, Sabatino S, Proietto F, Ammar S, Gadri A, Galia A, Scialdone O (2018) Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2-Ta2O5 or BDD anodes. Chemosphere 202:111–118.  https://doi.org/10.1016/j.chemosphere.2018.03.061 CrossRefGoogle Scholar
  105. Lugaresi O, Encontre H, Locatelli C, Minguzzi A, Vertova A, Rondinini S, Comninellis C (2014) Gas-phase volatile organic chloride electroreduction: a versatile experimental setup for electrolytic dechlorination and voltammetric analysis. Electrochem Commun 44:63–65.  https://doi.org/10.1016/j.elecom.2014.04.017 CrossRefGoogle Scholar
  106. Luo WJ, Wang JJ, Zhao X, Zhao ZY, Li ZS, Zou ZG (2013) Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions. Phys Chem Chem Phys 15:1006–1013.  https://doi.org/10.1039/C2cp43408c CrossRefGoogle Scholar
  107. Luo C, Chen Z, Wu DL, Ma LM (2014) Electrochemical reductive degradation of chlorobenzene using galvanically replaced Pd/Fe nanoscale particles. Chem Eng J 241:376–383.  https://doi.org/10.1016/j.cej.2013.10.072 CrossRefGoogle Scholar
  108. Ma C-A, Liu Y-N, Li M-C (2009) In-situ FTIR studies on electrooxidation of p-chlorophenol on Pt electrode. Acta Chim Sin 67:746–750 (in Chinese)Google Scholar
  109. Ma L, Wang J, Wang H, Zhang Q, Lu C, He X, Li X (2017a) High halogenated nitrobenzene hydrogenation selectivity over nano Ir particles. Chinese J Chem Eng 25:306–312.  https://doi.org/10.1016/j.cjche.2016.08.005 CrossRefGoogle Scholar
  110. Ma Y, Li P, Jin J, Wang Y, Wang Q (2017b) Current halogenated flame retardant concentrations in serum from residents of Shandong Province, China, and temporal changes in the concentrations. Environ Res 155:116–122.  https://doi.org/10.1016/j.envres.2017.02.010 CrossRefGoogle Scholar
  111. Madsen HT, Sogaard EG, Muff J (2014) Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) at boron doped diamond (BDD) and platinum-iridium anodes. Chemosphere 109:84–91.  https://doi.org/10.1016/j.chemosphere.2014.03.020 CrossRefGoogle Scholar
  112. Malpass GRP, Miwa DW, Santos RL, Vieira EM, Motheo AJ (2012) Unexpected toxicity decrease during photoelectrochemical degradation of atrazine with NaCl. Environ Chem Let 10:177–182.  https://doi.org/10.1007/s10311-011-0340-4 CrossRefGoogle Scholar
  113. Mao X, Ciblak A, Baek K, Amiri M, Loch-Caruso R, Alshawabkeh AN (2012) Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes. Water Res 46:1847–1857.  https://doi.org/10.1016/j.watres.2012.01.002 CrossRefGoogle Scholar
  114. Mao R, Zhao X, Qu J (2014) Electrochemical reduction of bromate by a Pd modified carbon fiber electrode: kinetics and mechanism. Electrochim Acta 132:151–157.  https://doi.org/10.1016/j.electacta.2014.03.170 CrossRefGoogle Scholar
  115. Markou V, Kontogianni MC, Frontistis Z, Tekerlekopoulou AG, Katsaounis A, Vayenas D (2017) Electrochemical treatment of biologically pre-treated dairy wastewater using dimensionally stable anodes. J Environ Manag 202:217–224.  https://doi.org/10.1016/j.jenvman.2017.07.046 CrossRefGoogle Scholar
  116. Martín de Vidales MJ, Sáez C, JF P’r, Cotillas S, Llanos J, Cañizares P, Rodrigo MA (2015) Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. J Appl Electrochem 45:799–808.  https://doi.org/10.1007/s10800-015-0825-0 CrossRefGoogle Scholar
  117. Martín de Vidales MJ, Cotillas S, Perez-Serrano JF, Llanos J, Sáez C, Cañizares P, Rodrigo MA (2016) Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Environ Sci Pollut R 23:19713–19722.  https://doi.org/10.1007/s11356-016-7189-9 CrossRefGoogle Scholar
  118. Martinez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145.  https://doi.org/10.1016/j.apcatb.2008.09.017 CrossRefGoogle Scholar
  119. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340.  https://doi.org/10.1039/b517632h CrossRefGoogle Scholar
  120. Matsukami H, Kose T, Watanabe M, Takigami H (2014) Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs. Sci Total Environ 493:672–681.  https://doi.org/10.1016/j.scitotenv.2014.06.062 CrossRefGoogle Scholar
  121. McGrath TJ, Ball AS, Clarke BO (2017) Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles. Environ Pollut 230:741–757.  https://doi.org/10.1016/j.envpol.2017.07.009 CrossRefGoogle Scholar
  122. Medeiros de Araújo D, Cañizares P, Martínez-Huitle CA, Rodrigo MA (2014) Electrochemical conversion/combustion of a model organic pollutant on BDD anode: role of sp3/sp2 ratio. Electrochem Commun 47:37–40.  https://doi.org/10.1016/j.elecom.2014.07.017 CrossRefGoogle Scholar
  123. Medeiros de Araújo D, Cotillas S, Sáez C, Cañizares P, Martínez-Huitle CA, Rodrigo MA (2015) Activation by light irradiation of oxidants electrochemically generated during rhodamine B elimination. J Electroanal Chem 757:144–149.  https://doi.org/10.1016/j.jelechem.2015.09.025 CrossRefGoogle Scholar
  124. Methatham T, Lu M-C, Ratanatamskul C (2014) Effect of operating parameters on triclosan degradation by Fenton’s reagents combined with an electrochemical system. Desalin Water Treat 52:920–928.  https://doi.org/10.1080/19443994.2013.827308 CrossRefGoogle Scholar
  125. Miller EB, Zahran EM, Knecht MR, Bachas LG (2017) Metal oxide semiconductor nanomaterial for reductive debromination: visible light degradation of polybrominated diphenyl ethers by Cu2O@Pd nanostructures. Appl Catal B Environ 213:147–154.  https://doi.org/10.1016/j.apcatb.2017.05.020 CrossRefGoogle Scholar
  126. Min SX, Wang F, Jin ZL, Xu J (2014) Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation. Superlattice Microst 74:294–307.  https://doi.org/10.1016/j.spmi.2014.07.003 CrossRefGoogle Scholar
  127. Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B Environ 142:877–890.  https://doi.org/10.1016/j.apcatb.2013.03.023 CrossRefGoogle Scholar
  128. Moreira FC, Garcia-Segura S, Boaventura RAR, Brillas E, Vilar JP (2014) Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl Catal B Environ 160:492–505.  https://doi.org/10.1016/j.apcatb.2014.05.052 CrossRefGoogle Scholar
  129. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B Environ 202:217–261.  https://doi.org/10.1016/j.apcatb.2016.08.037 CrossRefGoogle Scholar
  130. Moussavi G, Rezaei M (2017) Exploring the advanced oxidation/reduction processes in the VUV photoreactor for dechlorination and mineralization of trichloroacetic acid: parametric experiments, degradation pathway and bioassessment. Chem Eng J 328:331–342.  https://doi.org/10.1016/j.cej.2017.07.006 CrossRefGoogle Scholar
  131. Muff J, Jepsen H, Sogaard E (2012) Bench-scale study of electrochemical oxidation for on-site treatment of polluted groundwater. J Environ Eng-Asce 138:915–922.  https://doi.org/10.1061/(Asce)Ee.1943-7870.0000561 CrossRefGoogle Scholar
  132. Muthukrishnan A, Boyarskiy V, Sangaranarayanan MV, Boyarskaya I (2012) Mechanism and regioselectivity of the electrochemical reduction in polychlorobiphenyls (PCBs): kinetic analysis for the successive reduction of chlorines from dichlorobiphenyls. J Phys Chem C 116:655–664.  https://doi.org/10.1021/Jp2066474 CrossRefGoogle Scholar
  133. Neville EM, MacElroy JMD, Thampi KR, Sullivan JA (2013) Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: photo-electrochemical and photocatalytic properties. J Photoch Photobio A 267:17–24.  https://doi.org/10.1016/j.jphotochem.2013.06.008 CrossRefGoogle Scholar
  134. Nissen S, Alexander BD, Dawood I, Tillotson M, Wells RPK, Macphee DE, Killham K (2009) Remediation of a chlorinated aromatic hydrocarbon in water by photoelectrocatalysis. Environ Pollut 157:72–76.  https://doi.org/10.1016/j.envpol.2008.07.024 CrossRefGoogle Scholar
  135. Ochoa-Chavez AS, Pieczynska A, Fiszka Borzyszkowska A, Espinoza-Montero PJ, Siedlecka EM (2018) Electrochemical degradation of 5-FU using a flow reactor with BDD electrode: comparison of two electrochemical systems. Chemosphere 201:816–825.  https://doi.org/10.1016/j.chemosphere.2018.03.050 CrossRefGoogle Scholar
  136. Ojani R, Raoof JB, Zarei E (2012) Electrochemical monitoring of photoelectrocatalytic degradation of 3,4-dichlorophenol using TiO2 thin film modified graphite electrode. J Chin Chem Soc-Taip 59:917–922.  https://doi.org/10.1002/jccs.201100607 CrossRefGoogle Scholar
  137. Pablos C, Marugan J, van Grieken R, Adan C, Riquelme A, Palma J (2014) Correlation between photoelectrochemical behaviour and photoelectrocatalytic activity and scaling-up of P25-TiO2 electrodes. Electrochim Acta 130:261–270.  https://doi.org/10.1016/j.electacta.2014.03.038 CrossRefGoogle Scholar
  138. Pan W, Zhang XK, Ma HY, Zhang JT (2008) Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J Physl Chem C 112:2456–2461.  https://doi.org/10.1021/Jp710092z CrossRefGoogle Scholar
  139. Panizza M, Barbucci A, Ricotti R, Cerisola G (2007) Electrochemical degradation of methylene blue. Sep Purif Technol 54:382–387.  https://doi.org/10.1016/j.seppur.2006.10.010 CrossRefGoogle Scholar
  140. Panizza M, Clematis D, Cerisola G (2016) Electrochemical treatment of poorly biodegradable DPC cationic surfactant. J Environ Chem Eng 4:2692–2697.  https://doi.org/10.1016/j.jece.2016.05.013 CrossRefGoogle Scholar
  141. Páramo U, Ávila M, García MG, Gutiérrez S, Ibanez JG (2006) Electrochemical reduction of hexachlorobenzene in organic and aquo-organic media with cosalen as catalyst. Electroanal 18:904–910.  https://doi.org/10.1002/elan.200503475 CrossRefGoogle Scholar
  142. Park HS, Kweon KE, Ye H, Paek E, Hwang GS, Bard AJ (2011) Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C 115:17870–17879.  https://doi.org/10.1021/Jp204492r CrossRefGoogle Scholar
  143. Peiter A, Fiuza TER, de Matos R, Antunes AC, Antunes SRM, Lindino CA (2017) System development for concomitant degradation of pesticides and power generation. Water Air Soil Poll 228:114.  https://doi.org/10.1007/s11270-017-3298-4 CrossRefGoogle Scholar
  144. Perini L, Durante C, Favaro M, Agnoli S, Granozzi G, Gennaro A (2014) Electrocatalysis at palladium nanoparticles: effect of the support nitrogen doping on the catalytic activation of carbon-halogen bond. Appl Catal B Environ 144:300–307.  https://doi.org/10.1016/j.apcatb.2013.07.023 CrossRefGoogle Scholar
  145. Pęziak-Kowalska D, Fourcade F, Niemczak M, Amrane A, Chrzanowski Ł, Lota G (2017) Removal of herbicidal ionic liquids by electrochemical advanced oxidation processes combined with biological treatment. Environ Technol 38:1093–1099.  https://doi.org/10.1080/09593330.2016.1217941 CrossRefGoogle Scholar
  146. Philippidis N, Sotiropoulos S, Efstathiou A, Poulios I (2009) Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes. J Photoch Photobio A 204:129–136.  https://doi.org/10.1016/j.jphotochem.2009.03.007 CrossRefGoogle Scholar
  147. Pogacean F, Biris AR, Coros M, Watanabe F, Biris AS, Clichici S, Filip A, Pruneanu S (2014) Electrochemical oxidation of adenine using platinum electrodes modified with carbon nanotubes. Phys E 59:181–185.  https://doi.org/10.1016/j.physe.2014.01.016 CrossRefGoogle Scholar
  148. Poungchan G, Ksapabutr B, Panapoy M (2016) One-step synthesis of flower-like carbon-doped ZrO2 for visible-light-responsive photocatalyst. Mater Design 89:137–145.  https://doi.org/10.1016/j.matdes.2015.09.136 CrossRefGoogle Scholar
  149. Qi W, Zhang H, Hu C, Liu H, Qu J (2018) Effect of ozonation on the characteristics of effluent organic matter fractions and subsequent associations with disinfection by-products formation. Sci Total Environ 610-611:1057–1064.  https://doi.org/10.1016/j.scitotenv.2017.08.194 CrossRefGoogle Scholar
  150. Qiao Q, Singh S, Lo SL, Li Y, Jin J, Wang L (2018) Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and Co-modified PbO2 electrodes: preparation, characterization, optimization, and mineralization. J Taiwan Inst Chem Eng 84:110–122.  https://doi.org/10.1016/j.jtice.2018.01.008 CrossRefGoogle Scholar
  151. Qiu CC, Dong XQ, Huang MH, Wang SH, Ma HY (2011) Facile fabrication of nanostructured Pd-Fe bimetallic thin films and their electrodechlorination activity. J Mol Catal A Chem 350:56–63.  https://doi.org/10.1016/j.molcata.2011.09.004 CrossRefGoogle Scholar
  152. Quan X, Chen S, Su J, Chen J, Chen G (2004) Synergetic degradation of 2,4-D by integrated photo- and electrochemical catalysis on a Pt doped TiO2/Ti electrode. Sep Purif Technol 34:73–79.  https://doi.org/10.1016/S1383-5866(03)00177-1 CrossRefGoogle Scholar
  153. Radjenović J, Farre MJ, Mu Y, Gernjak W, Keller J (2012) Reductive electrochemical remediation of emerging and regulated disinfection byproducts. Water Res 46:1705–1714.  https://doi.org/10.1016/j.watres.2011.12.042 CrossRefGoogle Scholar
  154. Ramírez C, Saldaña A, Hernández B, Acero R, Guerra R, Garcia-Segura S, Brillas E, M Juan . Peralta-Hernández (2013) Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. J Ind Eng Chem 19:571–579.  https://doi.org/10.1016/j.jiec.2012.09.010
  155. Ramirez-Pereda B, Alvarez-Gallegos A, Rangel-Peraza JG, Bustos-Terrones YA (2018) Kinetics of acid orange 7 oxidation by using carbon fiber and reticulated vitreous carbon in an electro-Fenton process. J Environ Manag 213:279–287.  https://doi.org/10.1016/j.jenvman.2018.01.022 CrossRefGoogle Scholar
  156. Randazzo S, Scialdone O, Brillas E, Sires I (2011) Comparative electrochemical treatments of two chlorinated aliphatic hydrocarbons. Time course of the main reaction by-products. J Hazard Mater 192:1555–1564.  https://doi.org/10.1016/j.jhazmat.2011.06.075 CrossRefGoogle Scholar
  157. Rao ANS, Venkatarangaiah VT (2014) Metal oxide-coated anodes in wastewater treatment. Environ Sci Pollut R 21:3197–3217.  https://doi.org/10.1007/s11356-013-2313-6 CrossRefGoogle Scholar
  158. Raschitor A, Llanos J, Canizares P, Rodrigo MA (2017) Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2,4-dichlorophenoxyacetic acid. Chemosphere 182:58–89.  https://doi.org/10.1016/j.chemosphere.2017.04.153 CrossRefGoogle Scholar
  159. Rodan BD, Pennington DW, Eckley N, Boethling RS (1999) Screening for persistent organic pollutants: techniques to provide a scientific basis for POPs criteria in international negotiations. Environ Sci Technol 33:3482–3488.  https://doi.org/10.1021/es980060t CrossRefGoogle Scholar
  160. Rodrigo S, Sáez C, Navarro V, Cañizares P, Rodrigo MA (2018) Are electrochemical fences effective in the retention of pollution? Sep Purif Technol 201:19–24.  https://doi.org/10.1016/j.seppur.2018.02.040 CrossRefGoogle Scholar
  161. Roessler A, Jin X (2003) State of the art technologies and new electrochemical methods for the reduction of vat dyes. Dyes Pigments 59:223–235.  https://doi.org/10.1016/S0143-7208(03)00108-6 CrossRefGoogle Scholar
  162. Rondinini S, Lugaresi O, Achilli E, Locatelli C, Minguzzi A, Vertova A, Ghigna P, Comninellis C (2016) Fixed energy X-ray absorption voltammetry and extended X-ray absorption fine structure of Ag nanoparticle electrodes. J Electroanal Chem 766:71–77.  https://doi.org/10.1016/j.jelechem.2016.01.039 CrossRefGoogle Scholar
  163. Rosales E, Pazos M, Sanromán MA (2012) Advances in the electro-Fenton orocess for remediation of recalcitrant organic compounds. Chem Eng Technol 35:609–617.  https://doi.org/10.1002/ceat.201100321 CrossRefGoogle Scholar
  164. Roszko M, Szymczyk K, Jedrzejczak R (2015) Fate of PBDEs during food processing: assessment of formation of mixed chlorinated/brominated diphenyl ethers and brominated dioxins/furans. J Environ Sci Health B 50:884–895.  https://doi.org/10.1080/03601234.2015.1062661 CrossRefGoogle Scholar
  165. Salatiel W d S, Navarro EMO, Rodrigues MAS, Bernardes AM, Pérez-Herranz V (2019) Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin. J Electroanal Chen 832:112–120.  https://doi.org/10.1016/j.jelechem.2018.10.049 CrossRefGoogle Scholar
  166. Sawyer DT, Chiericato G, Angelis CT, Nanni EJ, Tsuchiya T (1982) Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal Chem 54:1720–1724.  https://doi.org/10.1021/ac00248a014 CrossRefGoogle Scholar
  167. Schröder F, Sharma UK, Mertens M, Devred F, Debecker DP, Luque R, EVVd E (2016) Silver-nanoparticle-catalyzed dearomatization of indoles toward 3-spiroindolenines via a 5-exo-dig spirocyclization. ACS Catal 6:8156–8161.  https://doi.org/10.1021/acscatal.6b02443 CrossRefGoogle Scholar
  168. Scialdone O, Galia A, Gurreri L, Randazzo S (2010a) Electrochemical abatement of chloroethanes in water: reduction, oxidation and combined processes. Electrochim Acta 55:701–708.  https://doi.org/10.1016/j.electacta.2009.09.039 CrossRefGoogle Scholar
  169. Scialdone O, Guarisco C, Galia A, Herbois R (2010b) Electroreduction of aliphatic chlorides at silver cathodes in water. J Electroanal Chem 641:14–22.  https://doi.org/10.1016/j.jelechem.2010.01.018 CrossRefGoogle Scholar
  170. Scialdone O, Galia A, Guarisco C, Mantia La S (2012) Abatement of 1,1′,2,2′-tetrachloroethane in water by reduction at silver cathode and oxidation at boron doped diamond anode in microreactors. Chem Eng J 189:229–236.  https://doi.org/10.1016/j.cej.2012.02.062 CrossRefGoogle Scholar
  171. Scialdone O, Corrado E, Galia A, Sires I (2014) Electrochemical processes in macro and microfluidic cells for the abatement of chloroacetic acid from water. Electrochim Acta 132:15–24.  https://doi.org/10.1016/j.electacta.2014.03.127 CrossRefGoogle Scholar
  172. Shi Q, Wang H, Liu S, Bian Z (2014) Electrocatalytic degradation of 2,4-dichlorophenol using a Pd/graphene gas-diffusion electrode. RSC Adv 4:56263–56272.  https://doi.org/10.1039/C4ra09253h CrossRefGoogle Scholar
  173. Shi Q, Wang H, Liu S, Pang L, Bian Z (2015) Electrocatalytic reduction-oxidation of chlorinated phenols using a nanostructured Pd-Fe modified graphene catalyst. Electrochim Acta 178:92–100.  https://doi.org/10.1016/j.electacta.2015.07.186 CrossRefGoogle Scholar
  174. Shi Q, Song X, Wang H, Bian Z (2017) Nriched photoelectrochemical performance of phosphate doped BiVO4 photoelectrode by coupling FeOOH and rGO. J Electrochem Soc 4:H3018–H3027.  https://doi.org/10.1149/2.0021804jes CrossRefGoogle Scholar
  175. Shi Q, Murcia-López S, Tang P, Flox C, Morante JR, Bian Z, Wang H, Andreu T (2018) Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process. ACS Catal 8:3331–3342.  https://doi.org/10.1021/acscatal.7b04277 CrossRefGoogle Scholar
  176. Shundrin LA, Irtegova IG, Avrorov PA, Mikhailovskaya TF, Makarov AG, Makarov AY, Zibarev AV (2017) Electrochemical reduction, radical anions, and dehalogenation of fluorinated/chlorinated 2,1,3-benzothia/selenadiazoles. Arkivoc 3:116–180.  https://doi.org/10.3998/ark.5550190.p010.116 CrossRefGoogle Scholar
  177. Siedlecka EM, Ofiarska A, Borzyszkowska AF, Białk-Bielińska A, Stepnowski P, Pieczyńska A (2018) Cytostatic drug removal using electrochemical oxidation with BDD electrode: degradation pathway and toxicity. Water Res 144:235–245.  https://doi.org/10.1016/j.watres.2018.07.035 CrossRefGoogle Scholar
  178. Sires I, Cabot PL, Centellas F, Garrido JA, Rodriguez RM, Arias C, Brillas E (2006) Electrochemical degradation of clofibric acid in water by anodic oxidation comparative study with platinum and boron-doped diamond electrodes. Electrochim Acta 52:75–85.  https://doi.org/10.1016/j.electacta.2006.03.075 CrossRefGoogle Scholar
  179. Sires I, Arias C, Cabot PL, Centellas F, Garrido JA, Rodriguez RM, Brillas E (2007) Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere 66:1660–1669.  https://doi.org/10.1016/j.chemosphere.2006.07.039 CrossRefGoogle Scholar
  180. Sires I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut R 21:8336–8367.  https://doi.org/10.1007/s11356-014-2783-1 CrossRefGoogle Scholar
  181. Sljukic B, Banks CE, Compton RG (2005) An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. J Iran Chem Soc 2:1–25.  https://doi.org/10.1016/j.electacta.2018.06.056 CrossRefGoogle Scholar
  182. Soares L, Alves A (2018) Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis. Mater Lett 211:339–342.  https://doi.org/10.1016/j.matlet.2017.10.023 CrossRefGoogle Scholar
  183. Sola-Gutierrez C, San Roman MF, Ortiz I (2018) Fate and hazard of the electrochemical oxidation of triclosan. Evaluation of polychlorodibenzopdioxins and polychlorodibenzofurans (PCDD/Fs) formation. Sci Total Environ 626:126–133.  https://doi.org/10.1016/j.scitotenv.2018.01.082 CrossRefGoogle Scholar
  184. Song X, Shi Q, Wang H, Liu S, Tai C, Bian Z (2017) Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols. Appl Catal B Environ 203:442–451.  https://doi.org/10.1016/j.apcatb.2016.10.036 CrossRefGoogle Scholar
  185. Song Y, Cang L, Fang G, Ata-Ul-Karim ST, Xu H, Zhou D (2018) Electrokinetic delivery of anodic in situ generated active chlorine to remediate diesel-contaminated sand. Chem Eng J 337:499–505.  https://doi.org/10.1016/j.cej.2017.12.122 CrossRefGoogle Scholar
  186. Soriano Á, Gorri D, Urtiaga A (2017) Design of a hybrid nanofiltration/electrooxidation process for the removal of perfluorohexanoic acid (PFHxA). Computer Aided Chem Eng 40:1129–1134.  https://doi.org/10.1016/B978-0-444-63965-3.50190-2 CrossRefGoogle Scholar
  187. Soriano Á, Gorri D, Urtiaga A (2019) Membrane preconcentration as an efficient tool to reduce the energy consumption of perfluorohexanoic acid electrochemical treatment. Sep Purif Technol 208:160–168.  https://doi.org/10.1016/j.seppur.2018.03.050 CrossRefGoogle Scholar
  188. Souza F, Saéz C, Lanza M, Cañizaresb P, Rodrigo MA (2016) Towards the scale-up of electrolysis with diamond anodes: effect of stacking on the electrochemical oxidation of 2,4 D. J Chem Technol Biotechnol 91:742–747.  https://doi.org/10.1002/jctb.4639 CrossRefGoogle Scholar
  189. Su JY, Lu N, Zhao JJ, Yu HT, Huang H, Dong XL, Quan X (2012) Nano-cubic structured titanium nitride particle films as cathodes for the effective electrocatalytic debromination of BDE-47. J Hazard Mater 231:105–113.  https://doi.org/10.1016/j.jhazmat.2012.06.044 CrossRefGoogle Scholar
  190. Su L, Li ZH, Fan M, Ying D, Sun T, Wang Y, Jia J (2017) Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res 120:1–11.  https://doi.org/10.1016/j.watres.2017.04.069 CrossRefGoogle Scholar
  191. Subramanyam P, Vinodkumar T, Nepak D, Deepa M, Subrahmanyam C (2018) Mo-doped BiVO4@reduced graphene oxide composite as an efficient photoanode for photoelectrochemical water splitting. Catal Today.  https://doi.org/10.1016/j.cattod.2018.07.006
  192. Sun Z, Ge H, Hu X, Peng Y (2010) Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solution. Sep Purif Technol 72:133–139.  https://doi.org/10.1016/j.seppur.2010.01.014 CrossRefGoogle Scholar
  193. Sun Z, Wang K, Wei X, Tong S, Hu X (2012a) Electrocatalytic hydrodehalogenation of 2,4-dichlorophenol in aqueous solution on palladium-nickel bimetallic electrode synthesized with surfactant assistance. Int J Hydrogen Energ 37:17862–17869.  https://doi.org/10.1016/j.ijhydene.2012.09.109 CrossRefGoogle Scholar
  194. Sun Z, Wei X, Hu X, Wang K, Shen H (2012b) Electrocatalytic dechlorination of 2,4-dichlorophenol in aqueous solution on palladium loaded meshed titanium electrode modified with polymeric pyrrole and surfactant. Colloids Surface A 414:314–319.  https://doi.org/10.1016/j.colsurfa.2012.08.035 CrossRefGoogle Scholar
  195. Sun Z, Wei X, Han Y, Tong S, Hu X (2013) Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode. J Hazard Mater 244:287–294.  https://doi.org/10.1016/j.jhazmat.2012.11.017 CrossRefGoogle Scholar
  196. Sun Z, Shen H, Wei X, Hu X (2014a) Electrocatalytic hydrogenolysis of chlorophenols in aqueous solution on Pd58Ni42 cathode modified with PPy and SDBS. Chem Eng J 241:433–442.  https://doi.org/10.1016/j.cej.2013.10.066 CrossRefGoogle Scholar
  197. Sun Z, Wei X, Shen H, Hu X (2014b) Preparation of palladium-nickel loaded titanium electrode with surfactant assistance and its application in pentachlorophenol reductive dechlorination. Sep Purif Technol 124:224–230.  https://doi.org/10.1016/j.seppur.2014.01.022 CrossRefGoogle Scholar
  198. Sun J, Zhang J, Fu H, Wan H, Wan Y, Qu X, Xu Z, Yin D, Zheng S (2018) Enhanced catalytic hydrogenation reduction of bromate on Pd catalyst supported on CeO2 modified SBA-15 prepared by strong electrostatic adsorption. Appl Catal B-Environ 229:32–40.  https://doi.org/10.1016/j.apcatb.2018.02.009 CrossRefGoogle Scholar
  199. Tan S, Zhang Y, Niu Z, Zhang Z (2018) Copper(0) mediated single electron transfer controlled radical polymerization toward CF bonds on poly (vinylidene fluoride). Macromol Rapid Comm 39.  https://doi.org/10.1002/marc.201700561
  200. Tang W, Chen X, Xia J, Gong J, Zeng X (2014) Preparation of an Fe-doped visible-light-response TiO2 film electrode and its photoelectrocatalytic activity. Mat Sci Eng B: Adv 187:39–45.  https://doi.org/10.1016/j.mseb.2014.04.011 CrossRefGoogle Scholar
  201. Thalluri SM, Hernández S, Bensaid S, Saracco G, Russo N (2016) Green-synthesized W- and Mo-doped BiVO4 oriented along the {0 4 0} facet with enhanced activity for the sun-driven water oxidation. Appl Catal B Environ 180:630–636.  https://doi.org/10.1016/j.apcatb.2015.07.029 CrossRefGoogle Scholar
  202. Trzesniewski BD, Nagaki IA, Ravishankar T, Herraiz-Cardona S, Vermaas I, Longo DA, Gimenez A, Smith S, Smith WA (2017) Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes. Enrg Environ Sci 10:1517–1529.  https://doi.org/10.1039/C6EE03677E CrossRefGoogle Scholar
  203. Tu J, Yang Z, Hu C (2015) Efficient catalytic aerobic oxidation of chlorinated phenols with mixed-valent manganese oxide nanoparticles. J Chem Technol Biot 90:80–86.  https://doi.org/10.1002/Jctb.4289 CrossRefGoogle Scholar
  204. Turabik M, Oturan N, Gozmen B, Oturan MA (2014) Efficient removal of insecticide “imidacloprid” from water by electrochemical advanced oxidation processes. Environ Sci Pollut R 21:8387–8397.  https://doi.org/10.1007/s11356-014-2788-9 CrossRefGoogle Scholar
  205. Vallejo M, Roman MFS, Ortiz I (2013) Quantitative assessment of the formation of polychlorinated derivatives, PCDD/Fs, in the electrochemical oxidation of 2-chlorophenol as function of the electrolyte type. Environ Sci Technol 47:12400–12408.  https://doi.org/10.1021/Es403246g CrossRefGoogle Scholar
  206. Vodyanitskii YN (2014) Effect of reduced iron on the degradation of chlorinated hydrocarbons in contaminated soil and ground water: a review of publication. Eurasian Soil Sci 47:119–133.  https://doi.org/10.1134/S1064229314020136 CrossRefGoogle Scholar
  207. Wang JG, Li XM (2012) Electrochemical treatment of wastewater containing chlorophenols using boron-doped diamond film electrodes. J Cent South Univ 19:1946–1952.  https://doi.org/10.1007/s11771-012-1230-z CrossRefGoogle Scholar
  208. Wang YR, Lu XH (2014) Study on the effect of electrochemical dechlorination reduction of hexachlorobenzene using different cathodes. J Anal Methods in Chem 2014:1–6.  https://doi.org/10.1155/2014/371510 CrossRefGoogle Scholar
  209. Wang H, Wang JL (2007) Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode. Appl Catal B Environ 77:58–65.  https://doi.org/10.1016/j.apcatb.2007.07.004 CrossRefGoogle Scholar
  210. Wang H, Wang JL (2008) Electrochemical degradation of 2,4-dichlorophenol on a palladium modified gas-diffusion electrode. Electrochim Acta 53:6402–6409.  https://doi.org/10.1016/j.electacta.2008.04.080 CrossRefGoogle Scholar
  211. Wang H, Wang JL (2009) Comparative study on electrochemical degradation of 2,4-dichlorophenol by different Pd/C gas-diffusion cathodes. Appl Catal B Environ 89:111–117.  https://doi.org/10.1016/j.apcatb.2008.12.003 CrossRefGoogle Scholar
  212. Wang Y, Shen ZY, Li Y, Niu JF (2010) Electrochemical properties of the erbium-chitosan-fluorine-modified PbO2 electrode for the degradation of 2,4-dichlorophenol in aqueous solution. Chemosphere 79:987–996.  https://doi.org/10.1016/j.chemosphere.2010.03.029 CrossRefGoogle Scholar
  213. Wang YJ, Xu J, Zong WZ, Zhu YF (2011) Enhancement of photoelectric catalytic activity of TiO2 film via polyaniline hybridization. J Solid State Chem 184:1433–1438.  https://doi.org/10.1016/j.jssc.2011.04.001 CrossRefGoogle Scholar
  214. Wang H, Bian Z, Lu G, Pang L, Zeng Z, Sun D (2012a) Preparation of multifunctional gas-diffusion electrode and its application to the degrading of chlorinated phenols by electrochemical reducing and oxidizing processes. Appl Catal B Environ 125:449–456.  https://doi.org/10.1016/j.apcatb.2012.06.019 CrossRefGoogle Scholar
  215. Wang H, Wei XJ, Bian ZY (2012b) Degradation of 4-chlorophenol by the anodic-cathodic cooperative effect with a Pd/MWNT gas-diffusion electrode. Water Sci Technol 65:2010–2015.  https://doi.org/10.2166/wst.2012.104 CrossRefGoogle Scholar
  216. Wang Q, He J, Shi Y, Zhang S, Niu T, She H, Bi Y (2017) Designing non-noble/semiconductor Bi/BiVO4 photoelectrode for the enhanced photoelectrochemical performance. Chem Eng J 326:411–418.  https://doi.org/10.1016/j.cej.2017.05.171 CrossRefGoogle Scholar
  217. Wang J, Zhang T, Mei Y, Pan B (2018a) Treatment of reverse-osmosis concentrate of printing and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP). Chemosphere 201:621–626.  https://doi.org/10.1016/j.chemosphere.2018.03.051 CrossRefGoogle Scholar
  218. Wang M, Han J, Lv C, Zhang Y, You M, Liu T, Li S, Zhu T (2018b) Ag, B, and Eu tri-modified BiVO4 photocatalysts with enhanced photocatalytic performance under visible-light irradiation. J Alloy Compd 753:465–474.  https://doi.org/10.1016/j.jallcom.2018.04.068 CrossRefGoogle Scholar
  219. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193.  https://doi.org/10.1002/smll.200500324 CrossRefGoogle Scholar
  220. Wu J, Jiang C, Wang B, Ma Y, Liu Z, Liu S (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72:1759–1765.  https://doi.org/10.1128/AEM.72.3.1759-1765.2006 CrossRefGoogle Scholar
  221. Wu Y, Gan L, Zhang S, Jiang B, Song H, Li W, Pan Y, Li A (2017) Enhanced electrocatalytic dechlorination of para-chloronitrobenzene based on Ni/Pd foam electrode. Chem Eng J 316:146–153.  https://doi.org/10.1016/j.cej.2017.01.024 CrossRefGoogle Scholar
  222. Xie W, Yuan S, Mao X, Hu W, Liao P, Tong M, Alshaulabkeh AN (2013) Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. Water Res 47:3573–3582.  https://doi.org/10.1016/j.cej.2017.01.024 CrossRefGoogle Scholar
  223. Xu YH, Zhu YH, Zhao FM, Ma CA (2007) Electrocatalytic reductive dehalogenation of polyhalogenated phenols in aqueous solution on Ag electrodes. Appl Catal A Gen 324:83–86.  https://doi.org/10.1016/j.apcata.2007.02.049 CrossRefGoogle Scholar
  224. Xu YH, Zhang H, Chu CP, Ma CA (2012) Dechlorination of chloroacetic acids by electrocatalytic reduction using activated silver electrodes in aqueous solutions of different pH. J Electroanal Chem 664:39–45.  https://doi.org/10.1016/j.jelechem.2011.10.010 CrossRefGoogle Scholar
  225. Xu X, Shao J, Li M, Gao K, Jin J, Zhu L (2016) Reductive transformation of p-chloronitrobenzene in the upflow anaerobic sludge blanket reactor coupled with microbial electrolysis cell: performance and microbial community. Bioresour Technol 218:1037–1045.  https://doi.org/10.1016/j.biortech.2016.07.037 CrossRefGoogle Scholar
  226. Xu Z, Liu H, Niu J, Zhou Y, Wang C, Wang Y (2017) Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater. J Hazard Mater 327:144–152.  https://doi.org/10.1016/j.jhazmat.2016.12.056 CrossRefGoogle Scholar
  227. Xu B, Zhai Y, Chen W, Wang B, Wang T, Zhang C, Li C, Zeng G (2018a) Perchlorate catalysis reduction by benzalkonium chloride immobilized biomass carbon supported Re-Pd bimetallic cluster particle electrode. Chem Eng J 348:765–774.  https://doi.org/10.1016/j.cej.2018.05.052 CrossRefGoogle Scholar
  228. Xu D, Song X, Qi W, Wang H, Bian Z (2018b) Degradation mechanism, kinetics, and toxicity investigation of 4-bromophenol by electrochemical reduction and oxidation with Pd-Fe/graphene catalytic cathodes. Chem Eng J 333:477–485.  https://doi.org/10.1016/j.cej.2017.09.173 CrossRefGoogle Scholar
  229. Xu S, Fu D, Song K, Wang L, Yang Z, Yang W, Hou H (2018c) One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem Eng J 349:368–375.  https://doi.org/10.1016/j.cej.2018.05.100 CrossRefGoogle Scholar
  230. Xu Y, Ge T, Ma H, Ding X, Zhang X, Liu Q (2018d) Rh-Pd-alloy catalyzed electrochemical hydrodefluorination of 4-fluorophenol in aqueous solutions. Electrochim Acta 270:110–119.  https://doi.org/10.1016/j.electacta.2018.03.018 CrossRefGoogle Scholar
  231. Xu D, Zhang L, Wang H, Bian Z (2019) Optimization of electrochemical sequential reduction-oxidation of chlorophene with CoNi alloy anchored ionic liquid-graphene cathode: comparison, mechanism and toxicity study. Chem Eng J 358:1371–1382.  https://doi.org/10.1016/j.cej.2018.10.129 CrossRefGoogle Scholar
  232. Xue S, He H, Wu Z, Yu C, Fan Q, Peng G, Yang K (2017) An interesting Eu, F-codoped BiVO4 microsphere with enhanced photocatalytic performance. J Alloy Compd 694:989–997.  https://doi.org/10.1016/j.jallcom.2016.10.146 CrossRefGoogle Scholar
  233. Yan X, Yuan K, Lu N, Xu H, Zhang S, Takeuchi N, Kobayashi H, Li R (2017) The interplay of sulfur doping and surface hydroxyl in band gap engineering: mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Appl Catal B Environ 218:20–31.  https://doi.org/10.1016/j.apcatb.2017.06.022 CrossRefGoogle Scholar
  234. Yang B, Deng S, Yu G, Lu Y, Zhang H, Xiao J, Chen G, Cheng X, Shi L (2013) Pd/Al bimetallic nanoparticles for complete hydrodechlorination of 3-chlorophenol in aqueous solution. Chem Eng J 219:492–498.  https://doi.org/10.1016/j.cej.2012.11.108 CrossRefGoogle Scholar
  235. Yang F, Cao B, Tao Y, Hu M, Feng C, Wang L, Jiang Z, Cao D, Zhang Y (2015) Electrodeposition of palladium on carbon nanotubes modified nickel foam as an efficient electrocatalyst towards hydrogen peroxide reduction. J Power Sources 298:38–45.  https://doi.org/10.1016/j.jpowsour.2015.08.052 CrossRefGoogle Scholar
  236. Yang M, He H, Zhang H, Zhong X, Dong F, Ke G, Chen Y, Du J, Zhou Y (2018) Enhanced photoelectrochemical water oxidation on WO3 nanoflake films by coupling with amorphous TiO2. Electrochim Acta 283:871–881.  https://doi.org/10.1016/j.electacta.2018.06.056 CrossRefGoogle Scholar
  237. Yao YW, Zhao CM, Zhu J (2012) Preparation and characterization of PbO2-ZrO2 nanocomposite electrodes. Electrochim Acta 69:146–151.  https://doi.org/10.1016/j.electacta.2012.02.103 CrossRefGoogle Scholar
  238. Ye YW, Wang X, Zheng WF, Li MC, Ma CA (2013) Electrooxidation reaction of 3-bromobenzoic acid on Pt electrode. Acta Phys -Chim Sin 29:553–558 (in Chinese)Google Scholar
  239. Yu F, Li F, Yao T, Du J, Liang Y, Wang Y, Han H, Sun L (2017a) Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode. ACS Catal 7:1868–1874.  https://doi.org/10.1021/acscatal.6b03483 CrossRefGoogle Scholar
  240. Yu Y, Huang Z, Deng D, Ju Y, Ren L, Xiang M, Li L, Li H (2017b) Synthesis of millimeter-scale sponge Fe/Cu bimetallic particles removing TBBPA and insights of degradation mechanism. Chem Eng J 325:279–288.  https://doi.org/10.1016/j.cej.2017.05.018 CrossRefGoogle Scholar
  241. Zacs D, Ikkere LE, Bartkevics V (2018) Emerging brominated flame retardants and dechlorane-related compounds in European eels (Anguilla anguilla) from Latvian lakes. Chemosphere 197:680–690.  https://doi.org/10.1016/j.chemosphere.2018.01.105 CrossRefGoogle Scholar
  242. Zahran EM, Bhattacharyya D, Bachas LG (2013) Reactivity of Pd/Fe bimetallic nanotubes in dechlorination of coplanar polychlorinated biphenyls. Chemosphere 91:165–171.  https://doi.org/10.1016/j.chemosphere.2012.12.037 CrossRefGoogle Scholar
  243. Zeng Q, Li J, Li L, Bai J, Xia L, Zhou B (2017) Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Appl Catal B Environ 217:21–29.  https://doi.org/10.1016/j.apcatb.2017.05.072 CrossRefGoogle Scholar
  244. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850.  https://doi.org/10.1002/adma.201100984 CrossRefGoogle Scholar
  245. Zhang H, Kelly BC (2018) Sorption and bioaccumulation behavior of multi-class hydrophobic organic contaminants in a tropical marine food web. Chemosphere 199:44–53.  https://doi.org/10.1016/j.chemosphere.2018.01.173 CrossRefGoogle Scholar
  246. Zhang Z, Meng H, Wang Y, Shi L, Wang X, Chai S (2018) Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in electro-Fenton process. Electrochim Acta 260:112–120.  https://doi.org/10.1016/j.electacta.2017.11.048 CrossRefGoogle Scholar
  247. Zhao BX, Li XZ, Wang P (2007a) 2,4-Dichlorophenol degradation by an integrated process: Photoelectrocatalytic oxidation and E-Fenton oxidation. Photochem Photobiol 83:642–646.  https://doi.org/10.1562/2006-09-05-Ra-1030 CrossRefGoogle Scholar
  248. Zhao X, Xu TG, Yao WQ, Zhang C, Zhu YF (2007b) Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation. Appl Catal B Environ 72:92–97.  https://doi.org/10.1016/j.apcatb.2006.10.006 CrossRefGoogle Scholar
  249. Zhao G, Gao J, Shi W, Liu M, Li D (2009) Electrochemical incineration of high concentration azo dye wastewater on the in situ activated platinum electrode with sustained microwave radiation. Chemosphere 77:188–193.  https://doi.org/10.1016/j.chemosphere.2009.07.044 CrossRefGoogle Scholar
  250. Zhao X, Liu HJ, Li AZ, Shen YL, Qu JH (2012) Bromate removal by electrochemical reduction at boron-doped diamond electrode. Electrochim Acta 62:181–184.  https://doi.org/10.1016/j.electacta.2011.12.013 CrossRefGoogle Scholar
  251. Zhao Z, Fang YL, Alvarez PJJ, Wong MS (2013) Degrading perchloroethene at ambient conditions using Pd and Pd-on-Au reduction catalysts. Appl Catal B Environ 140:468–477.  https://doi.org/10.1016/j.apcatb.2013.04.032 CrossRefGoogle Scholar
  252. Zhao X, Li A, Mao R, Liu H, Qu J (2014) Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode. Water Res 51:134–143.  https://doi.org/10.1016/j.watres.2013.12.028 CrossRefGoogle Scholar
  253. Zheng M, Bao J, Liao P, Wang K, Yuan S, Tong M, Long H (2012) Electrogeneration of H2 for Pd-catalytic hydrodechlorination of 2,4-dichlorophenol in groundwater. Chemosphere 87:1097–1104.  https://doi.org/10.1016/j.chemosphere.2012.01.058 CrossRefGoogle Scholar
  254. Zhou B, Qu JH, Zhao X, Liu HJ (2011) Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode. J Environ Sci-China 23:151–159.  https://doi.org/10.1016/S1001-0742(10)60387-7 CrossRefGoogle Scholar
  255. Zhou DD, Ding L, Cui H, An H, Zhai JP, Li Q (2012) Fabrication of high dispersion Pd/MWNTs nanocomposite and its electrocatalytic performance for bromate determination. Chem Eng J 200:32–38.  https://doi.org/10.1016/j.cej.2012.06.020 CrossRefGoogle Scholar
  256. Zhou J, Wu K, Wang W, Xu Z, Wan H, Zheng S (2014) Pd supported on boron-doped mesoporous carbon as highly active catalyst for liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol. Appl Catal A Gen 470:336–343.  https://doi.org/10.1016/j.apcata.2013.11.005 CrossRefGoogle Scholar
  257. Zhu K, Sun C, Chen H, Baig SAT, Xu X (2013) Enhanced catalytic hydrodechlorination of 2,4-dichlorophenoxyacetic acid by nanoscale zero valent iron with electrochemical technique using a palladium/nickel foam electrode. Chem Eng J 223:192–199.  https://doi.org/10.1016/j.cej.2013.03.019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringBeijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.College of Water SciencesBeijing Normal UniversityBeijingPeople’s Republic of China
  3. 3.School of Chemistry and Chemical EngineeringGuangxi University for NationalitiesNanningPeople’s Republic of China

Personalised recommendations