Pyrene degradation by marine-derived ascomycete: process optimization, toxicity, and metabolic analyses

  • Maria R. S. Vasconcelos
  • Gabriela A. L. Vieira
  • Igor V. R. Otero
  • Rafaella C. Bonugli-Santos
  • Marili V. N. Rodrigues
  • Vera L. G. Rehder
  • Milene Ferro
  • Sinésio Boaventura
  • Maurício BacciJr
  • Lara D. SetteEmail author
Research Article


Marine-derived fungi are relevant genetic resources for bioremediation of saline environments/processes. Among the five fungi recovered from marine sponges able to degrade pyrene (Py) and benzo[a]pyrene (BaP), Tolypocladium sp. strain CBMAI 1346 and Xylaria sp. CBMAI 1464 presented the best removal rates of Py and BaP, respectively. Since the decrease in BaP was related to mycelial adsorption, a combined strategy was applied for the investigation of Py degradation by the fungus Tolypocladium sp. CBMAI 1346. The selected fungus was able to degrade about 95% of Py after 7 days of incubation (optimized conditions), generating metabolites different from the ones found before optimization. Metabolites and transcriptomic data revealed that the degradation occurred mainly by the cytochrome P450 pathway. Putative monooxygenases and dioxygenases found in the transcriptome may play an important role. After 21 days of degradation, no toxicity was found in the optimized culture conditions. The findings from the present study highlight the potential of marine-derived fungi to degrade environmental pollutants and convey innovative information related to the metabolism of pyrene.


PAH degradation Artemia Experimental design Marine biotechnology Transcriptome 



MRSV thanks the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (no. 2011/18769-3) and Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for her scholarships. GALV thanks the FAPESP (no. 2018/03372-0) for her technical grant. IVRO thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (no. 170714/2017-9) for his scholarship. LDS thanks the CNPq for her Productivity Fellowship (303145/2016-1). The authors would like to thank Lucas Miotelo for the assistance with the article images.

Funding information

This study was financed by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant nos. 2013/19486-0 and 2016/07957-7).

Supplementary material

11356_2019_4518_MOESM1_ESM.pdf (85 kb)
ESM 1 (PDF 84 kb)


  1. Abbondanzi F, Campisi T, Focanti M, Guerra R, Iacondini A (2005) Assessing degradation capability of aerobic indigenous microflora in PAH-contaminated brackish sediments. Mar Environ Res 59:419–434. CrossRefGoogle Scholar
  2. Alexander FJ, King CK, Reichelt-Brushett AJ, Harrison PL (2017) Fuel oil and dispersant toxicity to the Antarctic sea urchin (Sterechinus neumayeri). Environ Toxicol Chem 36:1563–1571. CrossRefGoogle Scholar
  3. Anastasi A, Coppola T, Prigione V, Varese GC (2009) Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J Hazard Mater 165:1229–1233. CrossRefGoogle Scholar
  4. Argumedo-Delira R, Alarcón A, Ferrera-Cerrato R, Almaraz JJ, Peña-Cabriales JJ (2012) Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo[a]pyrene. J Environ Manag 95:S291–S299. CrossRefGoogle Scholar
  5. Arora DS, Gill PK (2001) Comparison of two assay procedures for lignin peroxidase. Enzym Microb Technol 28:602–605. CrossRefGoogle Scholar
  6. Arulazhagan P, Al-Shekri K, HudaQ GJJ, Basahi MM, Jeyakumar D (2017) Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles 21:163–174. CrossRefGoogle Scholar
  7. Bhadury P, Bik H, Lambshead JD, Austen MC, Smerdon GR, Rogers AD (2011) Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments. PLoS One 6:1–8. CrossRefGoogle Scholar
  8. Birolli WG, de Santos AD, Alvarenga N et al (2017) Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Mar Pollut Bull 129:525–533. CrossRefGoogle Scholar
  9. Bonugli-Santos RC, Vieira GAL, Collins C, Fernandes TCC, Marin-Morales MA, Murray P, Sette LD (2016) Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design. Environ Sci Pollut Res 23:8659–8668. CrossRefGoogle Scholar
  10. Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163. CrossRefGoogle Scholar
  11. Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71. CrossRefGoogle Scholar
  12. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333. CrossRefGoogle Scholar
  13. Cerniglia CE, Sutherland JB (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, p 481Google Scholar
  14. Darma UZ, Aziz NAA, Zulkefli SZ, Mustafa M (2016) Identification of phenanthrene and pyrene degrading bacteria from used engine oil contaminated soil. Int J Sci Eng Res 7:680–686Google Scholar
  15. Fouillaud M, Venkatachalam M, Llorente M, Magalon H, Cuet P, Dufossé L (2017) Biodiversity of pigmented fungi isolated from marine environment in La Réunion Island, Indian Ocean: new resources for colored metabolites. J Fungi 3:36. CrossRefGoogle Scholar
  16. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435. CrossRefGoogle Scholar
  17. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. CrossRefGoogle Scholar
  18. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. CrossRefGoogle Scholar
  19. Johnson AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84. CrossRefGoogle Scholar
  20. Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72. CrossRefGoogle Scholar
  21. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88. CrossRefGoogle Scholar
  22. Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci (China) 51:52–74. CrossRefGoogle Scholar
  23. Kazunga C, Aitken MD (2000) Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 66:1917–1922CrossRefGoogle Scholar
  24. Kester DR, Duedall IW, Connors DN, Pytkowicz RM (1967) Preparation of artificial seawater. Limnol Oceanogr 12:176–179CrossRefGoogle Scholar
  25. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250. CrossRefGoogle Scholar
  26. Lily MK, Bahuguna A, Dangwal K, Garg V (2009) Degradation of benzo [a] pyrene by a novel strain Bacillus subtilis BMT4I (MTCC 9447). Braz J Microbiol 40:884–892. CrossRefGoogle Scholar
  27. Luan TG, Yu KSH, Zhong Y, Zhou HW, Lan CY, Tam NFY (2006) Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere 65:2289–2296. CrossRefGoogle Scholar
  28. Luo S, Chen B, Lin L, Wang X, Tam NF, Luan T (2014) Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth. Environ Sci Technol 48:13917–13924. CrossRefGoogle Scholar
  29. Menezes CBA, Bonugli-Santos RC, Miqueletto PB, Passarini MRZ, Silva CHD, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 165:466–482. CrossRefGoogle Scholar
  30. Otero IVR, Ferro M, Bacci M, Ferreira H, Sette LD (2017) De novo transcriptome assembly: a new laccase multigene family from the marine-derived basidiomycete Peniophora sp. CBMAI 1063. AMB Express 7:11. CrossRefGoogle Scholar
  31. Passarini MRZ, Rodrigues MVN, da Silva M, Sette LD (2011a) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370. CrossRefGoogle Scholar
  32. Passarini MRZ, Sette LD, Rodrigues MVN (2011b) Improved extraction method to evaluate the degradation of selected PAHs by marine fungi grown in fermentative medium. J Braz Chem Soc 22:564–570. CrossRefGoogle Scholar
  33. Passarini MRZ, Santos C, Lima N, Berlinck RGS, Sette LD (2013) Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum. Arch Microbiol 195:99–111. CrossRefGoogle Scholar
  34. Pozdnyakova N (2012) Involvement of the ligninolytic system of white rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Review article. Biotechnol Res Int 2012:243217. CrossRefGoogle Scholar
  35. Selvin J, Ninawe AS, Seghal Kiran G, Lipton AP (2010) Sponge-microbial interactions: ecological implications and bioprospecting avenues. Crit Rev Microbiol 36:82–90. CrossRefGoogle Scholar
  36. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 2009(6):278–309. CrossRefGoogle Scholar
  37. Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206. CrossRefGoogle Scholar
  38. Souza HML, Taniguchi S, Bícego MC, Oliveira LA, Oliveira TCS, Barroso HS, Zanotto SP (2015) Polycyclic aromatic hydrocarbons in superficial sediments of the Negro River in the Amazon region of Brazil. J Braz Chem Soc 26:1438–1449. Google Scholar
  39. Szklarz GD, Antibus RK, Sinsabaugh RL, Linkins AE (1989) Production of phenol oxidases and peroxidases by wood-rotting fungi. Mycologia 81:234. CrossRefGoogle Scholar
  40. Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CIA, Allinor JI (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5:43–55. CrossRefGoogle Scholar
  41. Vieira GAL, Magrini MJ, Bonugli-Santos RC, Rodrigues MVN, Sette LD (2018) Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process. Brazilian J Microbiol 49:1–8. CrossRefGoogle Scholar
  42. Vite-Vallejo O, Palomares LA, Dantán-González E, Ayala-Castro HG, Martínez-Anaya C, Valderrama B, Folch-Mallol J (2009) The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzym Microb Technol 45:233–239. CrossRefGoogle Scholar
  43. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551. CrossRefGoogle Scholar
  44. Wang C, Sun H, Li J, Li Y, Zhang Q (2009) Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77:733–738. CrossRefGoogle Scholar
  45. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) DbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:445–451. CrossRefGoogle Scholar
  46. Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848. CrossRefGoogle Scholar
  47. Zhong Y, Luan T, Lin L, Liu H, Tam NFY (2011) Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp. Bioresour Technol 102:2965–2972. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maria R. S. Vasconcelos
    • 1
  • Gabriela A. L. Vieira
    • 2
  • Igor V. R. Otero
    • 2
  • Rafaella C. Bonugli-Santos
    • 1
    • 3
  • Marili V. N. Rodrigues
    • 4
  • Vera L. G. Rehder
    • 4
  • Milene Ferro
    • 5
  • Sinésio Boaventura
    • 4
  • Maurício BacciJr
    • 2
    • 5
  • Lara D. Sette
    • 1
    • 2
    Email author
  1. 1.Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e AgrícolasUniversidade Estadual de CampinasPaulíniaBrazil
  2. 2.Departamento de Bioquímica e Microbiologia, Instituto de BiociênciasUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP)Rio ClaroBrazil
  3. 3.Latin American Institute of Life and Nature SciencesFederal University of Latin American Integration (UNILA)ParanáBrazil
  4. 4.Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e AgrícolasUniversidade Estadual de CampinasPaulíniaBrazil
  5. 5.Centro de Estudos de Insetos Sociais, Instituto de BiociênciasUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP)Rio ClaroBrazil

Personalised recommendations