Environmental Science and Pollution Research

, Volume 26, Issue 11, pp 10887–10901 | Cite as

Assessment of the impact of heavy metals in sediments along the Spanish Mediterranean coastline: pollution indices

  • Maria Paches
  • Remedios Martínez-GuijarroEmail author
  • Daniel Aguado
  • Jose Ferrer
Research Article


A comprehensive study was carried out to evaluate the occurrence, significance of concentrations and spatial distribution of heavy metals (Cr, Cd, Ni, Cu, Pb, Hg, Zn and As) in sediments along the Valencia coastline (Spain). The sampling campaign covered 476 km of the coastline in a 4-year period. The highest concentrations of metals in the sediments were mainly Cr, Ni, Zn and Cd (up to 28.93 mg Cr kg−1 dw, 15.80 mg Ni kg−1 dw, 57.13 mg Zn kg−1 dw and 0.293 mg Cd kg−1 dw), obtained in the northern areas, some central areas and in an isolated area on the southern coastline. The Sediment Quality Guidelines applied reveal that for all metals studied, none of them reached, or exceed, the “effects of median range” or the “probable effect level”. The pollution index reveals that 75% of the stretch coastline has a low priority risk level and the rest “medium-low priority risk level”. And, lastly, Potential Ecological Risk Index shows that all but one zone have low ecological risk.


Heavy metals Sediment pollution Risk assessment Ecological risk indices Background enrichment indices Environmental impact Pollution effects 



This research work has been supported by the Generalitat Valenciana as part of the studies involved in the Water Framework Directive.


  1. Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factor sand the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238. CrossRefGoogle Scholar
  2. Adriano D (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer-Verlag, New York 866 ppCrossRefGoogle Scholar
  3. Alvarez-Guerra M, Viguri J, Casado-Martınez MC, Angel DelValls T (2007) Sediment quality assessment and dredged material management in Spain: part I, application of sediment quality guidelines in the Bay of Santander. Integr Environ Assess Manag 3:529–538CrossRefGoogle Scholar
  4. Amos HM, Jacob DJ, Holmes CD, Fisher JA, Wang Q, Yantosca RM, Corbitt ES, Galarneau E, Rutter A, Gustin MS, Steffen A, Schauer JJ, Graydon JA, St. Louis VL, Talbot RW, Edgerton ES, Zhang Y, Sunderland EM (2012) Gas-particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition. Atmos Chem Phys 12:591–603. CrossRefGoogle Scholar
  5. APHA (2012) Standard methods for the examination of water and wastewater, 21th. American Public Health Association, American Water Works Association, Water Environment Federation, WashingtonGoogle Scholar
  6. Badri MA, Aston SR (1983) Observation on heavy metals geochemical associations in polluted and nonpolluted estuarine sediments. Environ Pollut (Ser B) 6:181–193CrossRefGoogle Scholar
  7. Barhoumi B, Jouili S, Derouiche A, Elbarhoumi A, Mahfoudhi G, Atyaoui A, Bouabdallah S, Touil S, Ridha Driss M (2017) Sediment baseline study of levels, distributions and potential ecological risks of heavy metals in Bahiret El Bibane Lagoon (Tunisia, southwestern Mediterranean Sea). GERF Bull Biosci 8:1–14Google Scholar
  8. Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra A, Medeiros G, Painho M (2005) Assessing heavy metal contamination in Sado Estuary sediment, an index analysis approach. Ecol Indic 5:151–169. CrossRefGoogle Scholar
  9. Casado-Martínez MC, Forja JM, DelValls TA (2009) A multivariate assessment of sediment contamination in dredged materials from Spanish ports. J Hazard Mater 163:1353–1359. CrossRefGoogle Scholar
  10. Christophoridis C, Dedepsidis D, Fytianos K (2009) Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J Hazard Mater 168:1082–1091. CrossRefGoogle Scholar
  11. Cochran JK, Frignani M, Salamanca M, Bellucci LG, Guerzoni S (1998) Lead-210 as a tracer of atmospheric input of heavy metals in the northern Venice Lagoon. Mar Chem 62:15–29CrossRefGoogle Scholar
  12. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the CouncilGoogle Scholar
  13. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy text with EEA relevanceGoogle Scholar
  14. Donze M, Nieuwendijk C, Boxtel A, Quaak M (1990) Shaping the environment: aquatic pollution and dredging in the European community. Delwel Publishers, Hague 184 ppGoogle Scholar
  15. EPA Method 3051A (2007) Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC. Accessed May 2017
  16. Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324. CrossRefGoogle Scholar
  17. Förstner U, Wittmann GT (1981) Metal pollution in the aquatic environment. Springer-Verlag, LondonCrossRefGoogle Scholar
  18. Gao X, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46:1901–1911. CrossRefGoogle Scholar
  19. GVA (2009) IMPRESS Document. Artícle 5 of the Water Framework DirectiveGoogle Scholar
  20. Hakanson L (1980) An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14:975–1001CrossRefGoogle Scholar
  21. Hosono T, Su CC, Siringan F, Amano A, Onodera S (2010) Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay. Mar Pollut Bull 60:780–785. CrossRefGoogle Scholar
  22. Ip CCM, Li XD, Zhang G, Wai OWH, Li YS (2007) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ Pollut 147:311–323. CrossRefGoogle Scholar
  23. Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157(6):1745–1752. CrossRefGoogle Scholar
  24. Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248. CrossRefGoogle Scholar
  25. Kuwabara JS, Alpers CN, Marvin-Di Pasquale M, Topping BR, Carter JL, Stewart AR, Fend SV, Parchaso F, Moon GE, Krabbenhoft DP (2003) Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California. Publications of the US Geological Survey 53. Accessed Feb 2018
  26. Leivouri M (1998) Heavy metal contamination in surface sediments in the Gulf of Finland and comparison with the Gulf of Bothnia. Chemosphere 36(1):43–59CrossRefGoogle Scholar
  27. Li XD, Wai OWH, Li YS, Coles BJ, Ramsey MH, Thornton I (2000) Heavy metal distribution in sediment profiles of the Pearl River estuary, South China. Appl Geochem 15:567–581CrossRefGoogle Scholar
  28. Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83. CrossRefGoogle Scholar
  29. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97CrossRefGoogle Scholar
  30. Long ER, Field LJ, Macdonald DD (1998) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem 17(4):714–727CrossRefGoogle Scholar
  31. Long ER, MacDonald DD, Severn CG, Hong CB (2000) Classifying the probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ Toxicol Chem 19:2598–2601CrossRefGoogle Scholar
  32. López P (1986) Composición del sedimento en sistemas acuáticos del litoral Mediterráneo Español. Limnética 2:11–18Google Scholar
  33. Loska K, Wiechula D (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51:723–733. CrossRefGoogle Scholar
  34. Luoma SN (1990) Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, pp 51–66Google Scholar
  35. Macdonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278CrossRefGoogle Scholar
  36. Mason RP, Sheu GR (2002) Role of the ocean in the global mercury cycle. Glob Biogeochem Cycles 16(4):1–14. CrossRefGoogle Scholar
  37. Micó C, Peris M, Sánchez J, Recatalá L (2006) Heavy metal content of agricultural soils in a Mediterranean semiarid area: the Segura River Valley (Alicante, Spain). Span J Agric Res 4(4):363–372CrossRefGoogle Scholar
  38. Palanques A, Díaz JI (1990) Contaminación de metales pesados en los sedimentos superficiales de la plataforma continental de Barcelona (Mediterráneo Noroccidental). Rev Soc Geol Esp 3(3–4):357–371Google Scholar
  39. Parks R, Donnier-Marechal M, Frickers P, Turner A, Readman J (2010) Antifouling biocides in discarded marine paint particles. Mar Pollut Bull 60:1226–1230. CrossRefGoogle Scholar
  40. Pejman A, Bidhendi GN, Ardestani M, Mohsen Saeedi M, Akbar Baghvand A (2015) A new index for assessing heavy metals contamination in sediments: a case study. Ecol Indic 58:365–373. CrossRefGoogle Scholar
  41. PRTR-España (2016) Spanish Register of Emissions and Pollutant Sources. Accessed December 2017
  42. Pynaert K, Speleers L (2005) Development of an integrated approach for the removal of tributyltin (TBT) from waterways and harbours: prevention, treatment and reuse of TBT contaminated sediments. Report by the Environmental Research Center, Hofstade-Aalst, Belgium, 52 ppGoogle Scholar
  43. Rada RG, Wiener JG, Winfrey MR, Powel DE (1989) Recent increase in atmospheric deposition of mercury to North Central Wiscosin lakes from sediment analyses. Arch Environ Contam Toxicol 18:175–181. CrossRefGoogle Scholar
  44. Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31(4–12):183–192. CrossRefGoogle Scholar
  45. Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346(1–3):1–16. CrossRefGoogle Scholar
  46. Riba I, Casado-Martínez C, Forja JM, Del Vall A (2004) Sediment quality in the Atlantic coast of Spain. Environ Toxicol Chem 23:271–282CrossRefGoogle Scholar
  47. Romero I, Pachés M, Martínez-Guijarro R, Ferrer J (2013) Glophymed: an index to establish the ecological status for the Water Framework Directive based on phytoplankton in coastal waters. Mar Pollut Bull 75:218–223. CrossRefGoogle Scholar
  48. Sanchiz C, García-Carrascosa A, Pastor A (2000) Heavy metal contents in soft-bottom marine macrophytes and sediments along the Mediterranean coast of Spain. Mar Ecol 21(1):1–16CrossRefGoogle Scholar
  49. Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide contents in the river sediments. Appl Radiat Isot 69:1466–1474. CrossRefGoogle Scholar
  50. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192CrossRefGoogle Scholar
  51. Turley PA, Fern RJ, Ritter JC (2000) Pyrithione as antifoulants: environmental chemistry and preliminary risk assessment. Biofouling 15:175–182. CrossRefGoogle Scholar
  52. Upadhyay AK, Gupta KK, Sircar JK (2006) Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects. Environ Geol 50:397–403. CrossRefGoogle Scholar
  53. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364.
  54. Wenning RJ, Ingersoll CG (eds) (2002) Executive summary of the SETAC Pellston workshop on use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Society of Environmental Toxicology and Chemistry (SETAC), PensacolaGoogle Scholar
  55. Yalcin MG, Tumuklu A, Sonmez M, Erdag DS (2010) Application of multivariate statistical approach to identify heavy metal sources in bottom soil of the Seyhan River (Adana), Turkey. Environ Monit Assess 164(1–4):311–322. CrossRefGoogle Scholar
  56. Zhang Z, Juying L, Mamat Z, QingFu Y (2016) Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicol Environ Saf 126:94–101. CrossRefGoogle Scholar
  57. Zhao S, Feng C, Wang D, Tian C, Shen Z (2014) Relationship of metal enrichment with adverse biological effect in the Yangtze Estuary sediments: role of metal background values. Environ Sci Pollut Res 21:464–472. CrossRefGoogle Scholar
  58. Zhou J, Ma D, Pan J, Nie W, Wu K (2008) Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environ Geol 54:373–380. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CALAGUA—Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient—IIAMAUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.GEIA-Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient—IIAMAUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations