Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation

  • 365 Accesses

  • 1 Citations

Abstract

The aim of this study was to determine the photocatalytic performance of copper-doped TiO2 (Cu-TiO2) specimens on the degradation of dissolved organic matter (DOM) represented by a model humic acid (HA). TiO2 was synthesized by sol-gel method from an alkoxide precursor. Cu-doped TiO2 specimens containing 0.25 wt% and 0.50 wt% Cu were prepared by wet impregnation method using sol-gel synthesized as well as bare TiO2 P-25 and characterized by XRD, SEM, XPS, Raman spectroscopy, UV-DRS, and BET measurements. Their photocatalytic activities were evaluated with regard to degradation kinetics of HA in terms of UV-vis and fluorescence spectroscopic parameters and organic contents. HA fluorescence excitation emission matrix (EEM) contour plots indicated that the solar photocatalytic degradation pathway was TiO2-type specific and Cu dopant content.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguilar T, Navas J, Alcántara R, Fernández-Lorenzo C, Gallardo JJ, Blanco G, Martín-Calleja J (2013) A route for the synthesis of cu-doped TiO2 nanoparticles with a very low band gap. Chem Phys Lett 571:49–53. https://doi.org/10.1016/j.cplett.2013.04.007

  2. Ahmad J, Siddiqui MA, Akhtar MJ, Alhadlaq HA, Alshamsan A, Khan ST, Wahab R, Al-Khedhairy AA, Al-Salim A, Musarrat J, Saquib Q, Fareed M, Ahamed M (2018) Copper doping enhanced the oxidative stress–mediated cytotoxicity of TiO2 nanoparticles in A549 cells. Human Exp Toxicol 37:496–507. https://doi.org/10.1177/0960327117714040

  3. Araña J, Fernández Rodríguez C, González Díaz O, Herrera Melián JA, Pérez Peña J (2005) Role of Cu in the Cu-TiO2 photocatalytic degradation of dihydroxybenzenes. Catal Today 101:261–266. https://doi.org/10.1016/j.cattod.2005.03.006

  4. Banerjee S, Pillai SC, Falaras P, O’Shea KE, Byrne JA, Dionysiou DD (2014) New insights into the mechanism of visible light photocatalysis. J Phys Chem Lett 5:2543–2554. https://doi.org/10.1021/jz501030x

  5. Bashiri R, Mohamed NM, Kait CF, Sufian S (2015) Hydrogen production from water photosplitting using Cu/TiO2 nanoparticles: effect of hydrolysis rate and reaction medium. Int J Hydrog Energy 40:6021–6037. https://doi.org/10.1016/j.ijhydene.2015.03.019

  6. Bekbolet M, Sen-Kavurmaci S (2015) The effect of photocatalytic oxidation on molecular size distribution profiles of humic acid. Photochem Photobiol Sci 14:576–582. https://doi.org/10.1039/C4PP00262H

  7. Bensouici F, Bououdin M, Dakhel AA, Tala-Ighil R, Tounane M, Iratni A, Souier T, Liu S, Cai W (2017) Optical, structural and photocatalysis properties of cu-doped TiO2 thin films. Appl Surf Sci 395:110–116. https://doi.org/10.1016/j.apsusc.2016.07.034

  8. Birben NC, Uyguner-Demirel CS, Sen-Kavurmaci S, Gurkan YY, Turkten N, Cinar Z, Bekbolet M (2015) Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catalysis Today 240(Part A):125–131. https://doi.org/10.1016/j.cattod.2014.04.020

  9. Biyoghe Bi Ndong L, Ibondou MP, Gu X, Lu S, Qiu Z, Sui Q, Mbadinga SM (2014) Enhanced photocatalytic activity of TiO2 nanosheets by doping with Cu for chlorinated solvent pollutants degradation. Ind Eng Chem Res 53:1368–1376. https://doi.org/10.1021/ie403405z

  10. Boccuzzi F, Chiorino A, Gargano M, Ravasio N (1997) Preparation, characterization, and activity of Cu/TiO2 catalysts. II. Effect of the catalyst morphology on the hydrogenation of 1,3-cyclooctadiene and the CO–NO reaction on Cu/TiO2 catalysts. J Catal 165:140–149. https://doi.org/10.1006/jcat.1997.1476

  11. Bokhimi X, Morales A, Novaro O, López T, Chimal O, Asomoza M, Gómez R (1997) Effect of copper precursor on the stabilization of titania phases, and the optical properties of Cu/TiO2 prepared with the sol−gel technique. Chem Mater 9:2616–2620. https://doi.org/10.1021/cm970279r

  12. Byrne C, Fagan R, Hinder S, McCormack DE, Pillai SC (2016) New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts. RSC Adv 6:95232–95238. https://doi.org/10.1039/C6RA19759K

  13. Cao X, Tao J, Xiao X, Nan J (2018) Hydrothermal-assisted synthesis of the multi-element-doped TiO2 micro/nanostructures and their photocatalytic reactivity for the degradation of tetracycline hydrochloride under the visible light irradiation. J Photochem Photobiol A Chem 364:202–207. https://doi.org/10.1016/j.jphotochem.2018.06.013

  14. Carvalho HWP, Rocha MVJ, Hammer P, Ramalho TC (2013) TiO2–Cu photocatalysts: a study on the long- and short-range chemical environment of the dopant. J Mater Sci 48:3904–3912. https://doi.org/10.1007/s10853-013-7192-1

  15. Chelli VR, Golder AK (2017) Bimetal doping on TiO2 for photocatalytic water treatment: a green route. Eur Water 58

  16. Ci Y, Wang S, Zhang X, Fang Z, Ma A, Huang Z (2018) Chemical warfare agents’ degradation on Fe–Cu codoped kaTiO2 nanoparticles. Appl Phys A 124:786. https://doi.org/10.1007/s00339-018-2209-x

  17. Coloma F, Marquez F, Rochester CH, Anderson JA (2000) Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts. Phys Chem Chem Phys 2:5320–5327. https://doi.org/10.1039/B005331G

  18. Colón G, Maicu M, Hidalgo MC, Navío JA (2006) Cu-doped TiO2 systems with improved photocatalytic activity. Appl Catal B Environ 67:41–51. https://doi.org/10.1016/j.apcatb.2006.03.019

  19. Dong J, Ye J, Ariyanti D, Wang Y, Wei S, Gao W (2018) Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles. Chemosphere 204:193–201. https://doi.org/10.1016/j.chemosphere.2018.04.012

  20. Dorraj M, Alizadeh M, Sairi NA, Basirun WJ, Goh BT, Woi PM, Alias Y (2017) Enhanced visible light photocatalytic activity of copper-doped titanium oxide–zinc oxide heterojunction for methyl orange degradation. Appl Surf Sci 414:251–261. https://doi.org/10.1016/j.apsusc.2017.04.045

  21. Dorraj M, Goh BT, Sairi NA, Woi PM, Basirun WJ (2018) Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine. Appl Surf Sci 439:999–1009. https://doi.org/10.1016/j.apsusc.2017.12.248

  22. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C: Photochem Rev 25:1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003

  23. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14. https://doi.org/10.1016/j.mssp.2015.07.052

  24. Fisher MB, Keane DA, Fernández-Ibáñez P, Colreavy J, Hinder SJ, McGuigan KG, Pillai SC (2013) Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination. Appl Catal B Environ 130-131:8–13. https://doi.org/10.1016/j.apcatb.2012.10.013

  25. Frimmel FH, Abbt-Braun G (2009) Dissolved organic matter (DOM) in natural environments. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. https://doi.org/10.1002/9780470494950.ch10

  26. Guo MY, Liu F, Leung YH, He Y, Ng AMC, Djurišić AB, Li H, Shih K, Chan WK (2017) Annealing-induced antibacterial activity in TiO2 under ambient light. J Phys Chem C 121:24060–24068. https://doi.org/10.1021/acs.jpcc.7b07325

  27. Hirota K-I, Maeda M (2017) Copper and nitrogen co-doping effect on visible-light responsive photocatalysis of plasma-nitrided copper-doped titanium oxide film. J Mater Sci Chem Eng 5:52–62. https://doi.org/10.4236/msce.2017.512005

  28. Hu Q, Huang J, Li G, Chen J, Zhang Z, Deng Z, Jiang Y, Guo W, Cao Y (2016) Effective water splitting using CuOx/TiO2 composite films: role of Cu species and content in hydrogen generation. Appl Surf Sci 369:201–206. https://doi.org/10.1016/j.apsusc.2016.01.281

  29. Ilkhechi NN, Kaleji BK (2014) High temperature stability and photocatalytic activity of nanocrystalline anatase powders with Zr and Si co-dopants. J Sol-Gel Sci Technol 69:351–356. https://doi.org/10.1007/s10971-013-3224-1

  30. Ilkhechi NN, Kaleji BK, Salahi E, Hosseinabadi N (2015) Comparison of optical and structural properties of Cu doped and Cu/Zr co-doped TiO2 nanopowders calcined at various temperatures. J Sol-Gel Sci Technol 74:765–773. https://doi.org/10.1007/s10971-015-3661-0

  31. Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari DC, Miotello A (2015) Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl Catal B Environ 168-169:333–341. https://doi.org/10.1016/j.apcatb.2014.12.053

  32. Jo W-K, Jin Y-J (2018) 2D graphene-assisted low-cost metal (Ag, Cu, Fe, or Ni)-doped TiO2 nanowire architectures for enhanced hydrogen generation. J Alloys Compd 765:106–112. https://doi.org/10.1016/j.jallcom.2018.06.181

  33. Jung M, Hart JN, Scott J, Ng YH, Jiang Y, Amal R (2016) Exploring Cu oxidation state on TiO2 and its transformation during photocatalytic hydrogen evolution. Appl Catal A Gen 521:190–201. https://doi.org/10.1016/j.apcata.2015.11.013

  34. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V (2010) Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Colloid Interface Sci 352:68–74. https://doi.org/10.1016/j.jcis.2010.08.012

  35. Kerc A, Bekbolet M, Saatci AM (2004) Effects of oxidative treatment techniques on molecular size distribution of humic acids. Water Sci Technol 49:7–12. https://doi.org/10.2166/wst.2004.0205

  36. Khraisheh M, Wu L, Al-Muhtaseb AH, Al-Ghouti MA (2015) Photocatalytic disinfection of Escherichia coli using TiO2 P25 and Cu-doped TiO2. J Ind Eng Chem 28:369–376. https://doi.org/10.1016/j.jiec.2015.02.023

  37. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241. https://doi.org/10.1021/jp204364a

  38. Kumar PD, Lakshmana Reddy N, Srinivas B, Durgakumari V, Roddatis V, Bondarchuk Karthik M, Ikuma Y, Shankar MV (2016) Stable and active CuxO/TiO2 nanostructured catalyst for proficient hydrogen production under solar light irradiation. Sol Energy Mater Sol Cells 146:63–71. https://doi.org/10.1016/j.solmat.2015.11.030

  39. Lee B-M, Seo Y-S, Hur J (2015) Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC. Water Res 73:242–251. https://doi.org/10.1016/j.watres.2015.01.020

  40. Leyland NS, Podporska-Carroll J, Browne J, Hinder SJ, Quilty B, Pillai SC (2016) Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci Rep 6:24770. https://doi.org/10.1038/srep24770

  41. Li Bassi AL, Cattaneo D, Russo V, Bottani CE, Barborini E, Mazza T, Piseri P, Milani P, Ernst FO, Wegner K, Pratsinis SE (2005) Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. J Appl Phys 98:074305. https://doi.org/10.1063/1.2061894

  42. Lin JC-T, Sopajaree K, Jitjanesuwan T, Lu M-C (2018) Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols. Sep Purif Technol 191:233–243. https://doi.org/10.1016/j.seppur.2017.09.027

  43. López R, Gómez R, Llanos ME (2009) Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts. Catal Today 148:103–108. https://doi.org/10.1016/j.cattod.2009.04.001

  44. Mahmoud MS, Ahmed E, Farghali AA, Zaki AH, Abdelghani EAM, Barakat NAM (2018) Influence of Mn, Cu, and Cd–doping for titanium oxide nanotubes on the photocatalytic activity toward water splitting under visible light irradiation. Colloids Surf A Physicochem Eng Asp 554:100–109. https://doi.org/10.1016/j.colsurfa.2018.06.039

  45. Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126. https://doi.org/10.1016/j.powtec.2005.08.020

  46. Mathew S, Ganguly P, Rhatigan S, Kumaravel V, Byrne C, Hinder S, Bartlett J, Nolan M, Pillai SC (2018) Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Appl Sci 8:2067. https://doi.org/10.3390/app8112067

  47. Moongraksathum B, Shang J-Y, Chen Y-W (2018) Photocatalytic antibacterial effectiveness of cu-doped TiO2 thin film prepared via the peroxo sol-gel method. Catalysts 8:352. https://doi.org/10.3390/catal8090352

  48. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86. https://doi.org/10.1006/jcat.2001.3316

  49. Pava-Gómez B, Vargas-Ramírez X, Díaz-Uribe C (2018) Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films. J Photochem Photobiol A Chem 360:13–25. https://doi.org/10.1016/j.jphotochem.2018.04.022

  50. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

  51. Phong DD, Hur J (2015) Insight into photocatalytic degradation of dissolved organic matter in UVA/TiO2 systems revealed by fluorescence EEM-PARAFAC. Water Res 87:119–126. https://doi.org/10.1016/j.watres.2015.09.019

  52. Polliotto V, Livraghi S, Krukowska A, Dozzi MV, Zaleska-Medynska A, Selli E, Giamello E (2018) Copper-modified TiO2 and ZrTiO4: Cu oxidation state evolution during photocatalytic hydrogen production. ACS Appl Mater Interfaces 10:27745–27756. https://doi.org/10.1021/acsami.8b05528

  53. Pongwan P, Wetchakun K, Phanichphant S, Wetchakun N (2016) Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 nanoparticles. Res Chem Intermed 42:2815–2830. https://doi.org/10.1007/s11164-015-2179-y

  54. Reda SM, Khairy M, Mousa MA (2017) Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2017.02.002 open access

  55. Romera-Castillo C, Chen M, Yamashita Y, Jaffé R (2014) Fluorescence characteristics of size-fractionated dissolved organic matter: implications for a molecular assembly based structure? Water Res 55:40–51. https://doi.org/10.1016/j.watres.2014.02.017

  56. Sahu M, Suttiponparnit K, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Characterization of doped TiO2 nanoparticle dispersions. Chem Eng Sci 66:3482–3490. https://doi.org/10.1016/j.ces.2011.04.003

  57. Sen Kavurmaci S, Bekbolet M (2014) Tracing TiO2 photocatalytic degradation of humic acid in the presence of clay particles by excitation–emission matrix (EEM) fluorescence spectra. J Photochem Photobiol A Chem 282:53–61. https://doi.org/10.1016/j.jphotochem.2014.03.011

  58. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. (Recommendations 1984) vol 57. https://doi.org/10.1351/pac198557040603

  59. Tercero Espinoza LA, ter Haseborg E, Weber M, Karle E, Peschke R, Frimmel FH (2011) Effect of selected metal ions on the photocatalytic degradation of bog lake water natural organic matter. Water Res 45:1039–1048. https://doi.org/10.1016/j.watres.2010.10.013

  60. Tseng IH, Chang W-C, Wu JCS (2002) Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ 37:37–48. https://doi.org/10.1016/S0926-3373(01)00322-8

  61. Turkten N, Cinar Z (2017) Photocatalytic decolorization of azo dyes on TiO2: prediction of mechanism via conceptual DFT. Catal Today 287:169–175. https://doi.org/10.1016/j.cattod.2017.01.019

  62. Unwiset P, Makdee A, Chanapattharapol KC, Kidkhunthod P (2018) Effect of Cu addition on TiO2 surface properties and photocatalytic performance: X-ray absorption spectroscopy analysis. J Phys Chem Solids 120:231–240. https://doi.org/10.1016/j.jpcs.2018.05.003

  63. Uyguner CS, Bekbolet M (2004) Photocatalytic degradation of natural organic matter: kinetic considerations and light intensity dependence. International Journal of Photoenergy 6:73–80. https://doi.org/10.1155/s1110662x0400011x

  64. Uyguner CS, Bekbolet M (2005) Evaluation of humic acid photocatalytic degradation by UV–vis and fluorescence spectroscopy. Catal Today 101:267–274. https://doi.org/10.1016/j.cattod.2005.03.011

  65. Uyguner CS, Bekbolet M (2007) Contribution of metal species to the heterogeneous photocatalytic degradation of natural organic matter. Int J Photoenergy 2007:Article ID 23156. https://doi.org/10.1155/2007/23156

  66. Uyguner CS, Bekbolet M (2010) TiO2-assisted photocatalytic degradation of humic acids: effect of copper ions. Water Sci Technol 61:2581–2590. https://doi.org/10.2166/wst.2010.174

  67. Uyguner-Demirel CS, Bekbolet M (2011) Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation. Chemosphere 84:1009–1031. https://doi.org/10.1016/j.chemosphere.2011.05.003

  68. Wang Z, Cao J, Meng F (2015) Interactions between protein-like and humic-like components in dissolved organic matter revealed by fluorescence quenching. Water Res 68:404–413. https://doi.org/10.1016/j.watres.2014.10.024

  69. Wang M, Peng L, Wang J, Li C, Guan L, Lin Y (2018) Enhanced visible light photocatalytic decolorization of methylene blue by hierarchical ternary nanocomposites Cu-TiO2-mesoporous-silica microsphere. J Nanosci Nanotechnol 18:8269–8275. https://doi.org/10.1166/jnn.2018.16405

  70. Xu Y-H, Liang D-H, M-l L, Liu D-Z (2008) Preparation and characterization of Cu2O–TiO2: efficient photocatalytic degradation of methylene blue. Mater Res Bull 43:3474–3482. https://doi.org/10.1016/j.materresbull.2008.01.026

  71. Yadav HM, Otari SV, Koli VB, Mali SS, Hong CK, Pawar SH, Delekar SD (2014) Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J Photochem Photobiol A Chem 280:32–38. https://doi.org/10.1016/j.jphotochem.2014.02.006

  72. Yang X-J, Wang S, Sun H-M, Wang X-B, Lian J-S (2015) Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans Nonferrous Metals Soc China 25:504–509. https://doi.org/10.1016/S1003-6326(15)63631-7

  73. Zhang M, Sun R, Li Y, Shi Q, Xie L, Chen J, Xu X, Shi H, Zhao W (2016) High H2 evolution from quantum Cu(II) nanodot-doped two-dimensional ultrathin TiO2 nanosheets with dominant exposed {001} facets for reforming glycerol with multiple electron transport pathways. J Phys Chem C 120:10746–10756. https://doi.org/10.1021/acs.jpcc.6b01030

  74. Zheng X, Shen Z-P, Cheng C, Shi L, Cheng R, Yuan D-H (2018) Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light. Environ Pollut 237:452–459. https://doi.org/10.1016/j.envpol.2018.02.074

  75. Zhou M, Yu J, Cheng B (2006) Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J Hazard Mater 137:1838–1847. https://doi.org/10.1016/j.jhazmat.2006.05.028

Download references

Acknowledgements

The authors are thankful to Prof Neren Okte, Bogazici University, Chemistry Department, for BET and UV-DRS measurements. The authors are also thankful to Assoc. Prof. Serap Acar Derman, Yildiz Technical University, Department of Bioengineering for zeta potential measurements.

Funding

Financial support provided by the Research Fund of Bogazici University through Project No: 13381 is gratefully acknowledged.

Author information

Correspondence to Miray Bekbolet.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Suresh Pillai

Electronic supplementary material

ESM 1

(DOCX 1610 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turkten, N., Cinar, Z., Tomruk, A. et al. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation. Environ Sci Pollut Res 26, 36096–36106 (2019). https://doi.org/10.1007/s11356-019-04474-x

Download citation

Keywords

  • Cu-doped TiO2
  • EEM
  • Humic acid
  • Photocatalysis
  • Sol-gel
  • TiO2