Advertisement

Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny

  • Athirstam Ponsankar
  • Kitherian Sahayaraj
  • Sengottayan Senthil-NathanEmail author
  • Prabhakaran Vasantha-Srinivasan
  • Sengodan Karthi
  • Annamalai Thanigaivel
  • Ganesan Petchidurai
  • Mariappan Madasamy
  • Wayne B. Hunter
Toxicological Effects of Environmental Pollution
  • 17 Downloads

Abstract

Pest management with natural botanical insecticides is a significant implementation for the sustainability of agroecosystem by reducing the unnecessary risk from the inputs of synthetic insecticides. In this research, we isolated the bioactive compound cucurbitacin E from Citrullus colocynthis (L.) Schrad, and their toxicological effects were screened against different larval instars of Spodoptera litura. The bioactive compound cucurbitacin E was chemically characterized through TLC, FT-IR, and NMR analyses. The larval mortality bioassay revealed that the larvae exposed to cucurbitacin E at the discriminating dose of 50 ppm display higher mortality rate against second (93.8%), third (86.4%), and fourth (73.2%) instar respectively. The lethal concentrations (LC50 and LC90) was detected as 15.84 and 67.60 ppm for third instar respectively. The sub-lethal concentration of cucurbitacin E (2, 4, and 6 ppm) intentionally altered the percentage of survival, pupation, fecundity, and egg hatchability of S. litura. Moreover, antifeedant activity of cucurbitacin E was analyzed using choice-based test. In addition, we found the toxic effects of cucurbitacin E (50 and 100 ppm) and chemical pesticides (cypermethrin and monocrotophos) against terrestrial beneficial earthworm Eisenia fetida, and the result revealed that cucurbitacin E has no harmful effect on non-target organism. Hence, the present study reveals that cucurbitacin E might be a part of a new biorational product alternative to synthetic pesticides.

Keywords

Toxicity FT-IR GC-MS Mortality Antifeedant Earth worm 

Notes

Acknowledgements

The authors are thankful to Rev. Dr. Anthonysamy, S.J and Rev. Dr. V. Britto, S.J for their encouragement and for providing an infrastructure facility to carry out this work.

Funding information

The author Dr. Athirstam Ponsankar was financially supported by the Science and Engineering Research Board (DST-SERB), Government of India (File number: PDF/2016/002902).

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Abdelwahab SI, Hassan LEA, Sirat HM, Yagi SMA, Koko WS, Mohan S, Taha MME, Ahmad S, Chuen CS, Narrima P (2011) Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: role of reactive nitrogen species and cyclooxygenase enzyme inhibition. Fitoterapia 82:1190–1197CrossRefGoogle Scholar
  3. Agrawal AA (2000) Host-range evolution: adaptation and trade-offs in fitness of mites on alternative hosts. Ecol 81(2):500–508CrossRefGoogle Scholar
  4. Ali AA, Alian MA, Elmahi HA (2013) Phytochemical analysis of some chemical metabolites of colocynth plant (Citrullus colocynthis L.) and its activities as antimicrobial and antiplasmidial. J Basic Sci Appl Res 3:228–236Google Scholar
  5. Ayil-Gutiérrez BA, Sánchez-Teyer LF, Vazquez-Flota F, Monforte-González M, Tamayo-Ordóñez Y, Tamayo-Ordóñez MC, Rivera G (2018) Biological effects of natural products against Spodoptera spp. Crop Prot 114:195–207CrossRefGoogle Scholar
  6. Balkema-Boomstra AG, Zijlstra S, Verstappen FWA, Inggamer H, Mercke PE, Jongsma MA, Bouwmeester HJ (2003) Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). J Chem Ecol 29(1):225–235CrossRefGoogle Scholar
  7. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  8. Benelli G, Jeffries CL, Walker T (2016) Biological control of mosquito vectors: past, present, and future. Insects 7:52CrossRefGoogle Scholar
  9. Benelli G, Pavela R, Petrelli R, Cappellacci L, Santini G, Fiorini D, Sut S, Dall’Acqua S, Canale A, Maggi F (2018a) The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind Crop Prod 122:308–315CrossRefGoogle Scholar
  10. Benelli G, Pavela R, Petrelli R, Cappellacci L, Canale A, Senthil-Nathan S, Maggi F (2018b) Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind Crop Prod 124:236–243CrossRefGoogle Scholar
  11. Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic Biochem Physiol 104:65–71CrossRefGoogle Scholar
  12. Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX (2005) Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Res 22:386–399Google Scholar
  13. Chen C, Wang Y, Zhao X, Qian Y, Wang Q (2014) Combined toxicity of butachlor, atrazine and k-cyhalothrin on the earthworm Eisenia fetida by combination index (CI)-isobologram method. Chemosphere 112:393–401CrossRefGoogle Scholar
  14. Dinesh-Kumar A, Srimaan E, Chellappandian M, Vasantha-Srinivasan P, Karthi S, Thanigaivel A, Ponsankar A, Chanthini KM-P, Shyam-Sundar N, Annamalai M (2018) Target and non-target response of Swietenia Mahagoni Jacq. chemical constituents against tobacco cutworm Spodoptera litura Fab. and earthworm, Eudrilus eugeniae Kinb. Chemosphere 199:35–43CrossRefGoogle Scholar
  15. Elsheikh YA (2013) Preparation of Citrullus colocynthis biodiesel via dual-step catalyzed process using functionalized imidazolium and pyrazolium ionic liquids for esterification step. Ind Crop 49:822–829CrossRefGoogle Scholar
  16. Eriksson C, Månsson PE, Sjödin K, Schlyter F (2008) Antifeedants and feeding stimulants in bark extracts of ten woody non-host species of the pine weevil, Hylobius abietis. J Chem Ecol 34:1290–1297CrossRefGoogle Scholar
  17. Finney DJ (1971) Probit Analysis, third edn. Cambridge University Press, London, p 383Google Scholar
  18. Gandhi K, Patil RH, Srujana Y (2016) Field resistance of Spodoptera litura (Fab.) to conventional insecticides in India. Crop Prot 88:103–108CrossRefGoogle Scholar
  19. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526CrossRefGoogle Scholar
  20. Giongo AMM, Vendramim JD, Forim MR (2016) Evaluation of neem-based nanoformulations as alternative to control fall armyworm. Cienc E Agrotecnol 40:26–36CrossRefGoogle Scholar
  21. Grumiaux F, Demuynck S, Schikorski D, Lemière S, Leprêtre A (2010) Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei. Chemosphere 79:156–161CrossRefGoogle Scholar
  22. Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst 8:157–178CrossRefGoogle Scholar
  23. Haouas D, Flamini G, HaliMa-Kamel MB, Hamouda MHB (2010) Feeding perturbation and toxic activity of five Chrysanthemum species crude extracts against Spodoptera littoralis (Boisduval) (Lepidoptera; Noctuidae). Crop Prot 29:992–997CrossRefGoogle Scholar
  24. Hassan LEA, Koko WS, Osman EBE, Dahab MM, Sirat HM (2011) In vitro antigiardial activity of Citrullus lanatus Var. citroides extracts and cucurbitacins isolated compounds. J Med Plants Res 5(15):3338–3346Google Scholar
  25. Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicol 307:136–145CrossRefGoogle Scholar
  26. Hussain AI, Rathore HA, Sattar MZA, Chatha SAS, Sarker SD, Gilani AH (2014) Citrullus colocynthis (L.) Schrad (bitter apple fruit): a review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol 155:54–66CrossRefGoogle Scholar
  27. Kabir KE, Choudhary MI, Ahmed S, Tariq RM (2013) Growth-disrupting, larvicidal and neurobehavioral toxicity effects of seed extract of Seseli diffusum against Aedes aegypti (L.) (Diptera: Culicidae). Ecotoxicol Environ Saf 90:52–60CrossRefGoogle Scholar
  28. Kamboj A, Kaur R, Jain UK, Saluja AK (2016) Quantitative estimation of cucurbitacin E in various extracts of Cucumis sativus L. by spectrophotometric method. Int J Res Ayurveda Pharm 7:114–122CrossRefGoogle Scholar
  29. Karthi S, Vaideki K, Shivakumar MS, Ponsankar A, Thanigaivel A, Chellappandian M, Vasantha-Srinivasan P, Chanthini KM, Hunter WB, Senthil-Nathan S (2018) Effect of on the mortality of Aspergillus flavus and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae. Pestic Biochem Physiol 149:54–60CrossRefGoogle Scholar
  30. Khan S, Taning CNT, Bonneure E, Mangelinckx S, Smagghe G, Shah MM (2017) Insecticidal activity of plant-derived extracts against different economically important pest insects. Phytoparasitica 45:113–124CrossRefGoogle Scholar
  31. Lankadurai BP, Nagato EG, Simpson AJ, Simpson MJ (2015) Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using 1H-NMR based metabolomics. Ecotoxicol Environ Saf 120:48–58CrossRefGoogle Scholar
  32. Luo Y, Ling B, Xie JF, Zhang MX (2012) Inhibition effects of ethyl acetate extracts of Momordica charantia leaves on the experimental population of Spodoptera litura. Acta Ecol Sin 32:4173–4180CrossRefGoogle Scholar
  33. Miyazaki A, Amano T, Saito H, Nakano Y (2002) Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms. Chemosphere 47:65–69CrossRefGoogle Scholar
  34. Murillo MCÁ, Suarez LEC, Salamanca JAC (2014) Actividad insecticida sobre Spodoptera frugiperda (Lepidoptera: Noctuidae) de los compuestos aislados de la parte aérea de Piper septuplinervium (Miq.) c. dc. y las inflorescencias de Piper subtomentosum Trel. & Yunck. (Piperaceae). Química Nova 37:442–446CrossRefGoogle Scholar
  35. Nehdi IA, Sbihi H, Tan CP, Al-Resayes SI (2013) Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: comparison with Helianthus annuus (sunflower) seed oil. Food Chem 136:348–353CrossRefGoogle Scholar
  36. OECD (1984) Guideline for testing of chemicals no. 207. Earthworm, acute toxicity tests, OECD—guideline for testing chemicals, ParisGoogle Scholar
  37. Pavela R (2018) Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ Sci Pollut Res 25(11):10904–10910CrossRefGoogle Scholar
  38. Ponsankar A, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin E, Selin-Rani S, Kalaivani K, Hunter WB, Alessandro RT, Abel-Megeed A (2016) Target and non-target toxicity of botanical insecticide derived from Couroptia guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol Environ Saf 133:260–270CrossRefGoogle Scholar
  39. Ponsankar A, Vasantha-Srinivasan P, Thanigaivel A, Edwin E-S, Selin-Rani S, Chellappandian M, Senthil-Nathan S, Kalaivani K, Mahendiran A, Hunter WB (2018) Response of Spodoptera litura Fab.(Lepidoptera: Noctuidae) larvae to Citrullus colocynthis L.(Cucurbitales: Cucurbitaceae) chemical constituents: larval tolerance, food utilization and detoxifying enzyme activities. Physiol Mol Plant Pathol 101:16–28CrossRefGoogle Scholar
  40. Porretta D, Gargani M, Bellini R, Medici A, Punelli F, Urbanelli S (2008) Defence mechanisms against insecticides temephos and diflubenzuron in the mosquito Aedes caspius: the P-glycoprotein efflux pumps. Med Vet Entomol 22:48–54CrossRefGoogle Scholar
  41. Rahuman AA, Venkatesan P, Gopalakrishnan G (2008) Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitol Res 103:1383–1390CrossRefGoogle Scholar
  42. Ríos JL, Escandell JM, Recio MC (2005) New insights into the bioactivity of cucurbitacins. Stud Nat Prod Chem 32:429–469Google Scholar
  43. Sadek MM (2003) Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis (Lep., Noctuidae). J Appl Entomol 127:396–404CrossRefGoogle Scholar
  44. Selin-Rani S, Senthil-Nathan S, Thanigaivel A, Vasantha-Srinivasan P, Edwin E-S, Ponsankar A, Lija-Escaline J, Kalaivani K, Abdel-Megeed A, Hunter WB (2016) Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere 165:257–267CrossRefGoogle Scholar
  45. Senthil-Nathan S, Chung PG, Murugan K (2006a) Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (Guenee) (the rice leaffolder) (Insecta: Lepidoptera: Pyralidae). Ecotoxicol Environ Saf 64:382–389CrossRefGoogle Scholar
  46. Senthil-Nathan S (2015) A review of biopesticides and their mode of action against insect pests. Environmental sustainability. Springer, Verlag, pp. 49–63.  https://doi.org/10.1007/978-81-322-2056-5_3
  47. Senthil-Nathan S, Kalaivani K (2006) Combined effects of azadirachtin and nucleopolyhedrovirus (SpltNPV) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) larvae. Biol Control 39:96–104CrossRefGoogle Scholar
  48. Senthil-Nathan S, Sehoon K (2006) Effects of Melia azedarach L. extract on the teak defoliator Hyblaea puera Cramer (Lepidoptera: Hyblaeidae). Crop Prot 25:287–291CrossRefGoogle Scholar
  49. Senthil-Nathan S, Kalaivani K, Murugan K (2006b) Effect of biopesticides on the lactate dehydrogenase (LDH) of the rice leaffolder, Cnaphalocrocis medinalis (Guenee) (Insecta: Lepidoptera: Pyralidae). Ecotoxicol Environ Saf 65:102–107CrossRefGoogle Scholar
  50. Senthil-Nathan S, Choi M, Paik C, Seo H (2007) Food consumption, utilization, and detoxification enzyme activity of the rice leaf folder larvae after treatment with Dysoxylum triterpenes. Pestic Biochem Physiol 88:260–267CrossRefGoogle Scholar
  51. Senthil-Nathan S, Choi M-Y, Paik C-H, Kalaivani K (2008) The toxicity and physiological effect of goniothalamin, a styryl-pyrone, on the generalist herbivore, Spodoptera exigua Hübner. Chemosphere 72:1393–1400CrossRefGoogle Scholar
  52. Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC, Lopez-Ferber M (2015) Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci 6:381CrossRefGoogle Scholar
  53. Singh B, Kaur T, Kaur S, Manhas RK, Kaur A (2016) Insecticidal potential of an endophytic Cladosporium velox against Spodoptera litura mediated through inhibition of alpha glycosidases. Pestic Biochem Physiol 131:46–52CrossRefGoogle Scholar
  54. Siva B, Devi A, Venkanna A, Poornima B, Sukumar G, Reddy SD, Vijaya M, Ummanni R, Babu KS (2017) Click reaction based synthesis of nimbolide derivatives and study of their insect antifeedant activity against Spodoptera litura larvae. Fitoterapia 123:1–8CrossRefGoogle Scholar
  55. Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State Univ, Press, AmesGoogle Scholar
  56. Tallamy DW, Stull J, Ehresman NP, Gorski PM, Mason CE (1997) Cucurbitacins as feeding and oviposition deterrents to insects. Environ Entomol 26(3):678–683CrossRefGoogle Scholar
  57. Tannin-Spitz T, Grossman S, Dovrat S, Gottlieb HE, Bergman M (2007) Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem Pharmacol 73:56–67CrossRefGoogle Scholar
  58. Torkey HM, Abou-Yousef HM, Abdel AZ, Hoda EAF (2009) Insecticidal effect of cucurbitacin E glycoside isolated from Citrullus colocynthis against Aphis Craccivora. Aust J Basic Appl Sci 3:4060–4066Google Scholar
  59. Tripathi G, Kachhwaha N, Dabi I (2010) Comparative studies on carbofuran-induced changes in some cytoplasmic and mitochondrial enzymes and proteins of epigeic, anecic and endogeic earthworms. Pest Biochem Physiol 96:30–35CrossRefGoogle Scholar
  60. USDA (2009) Natural Resources Conservation Services, NRCS, Soil quality indicator sheets. Hand bookGoogle Scholar
  61. Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin E, Ponsankar A, Selin-Rani S et al (2016) Developmental response of Spodoptera litura Fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb. Chemosphere 155:336–347CrossRefGoogle Scholar
  62. Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Chellappandian M, Edwin E-S, Selin-Rani S, Kalaivani K, Hunter WB, Duraipandiyan V (2018) Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny). Environ Sci Pollut Res 25(11):10371–10382Google Scholar
  63. Viljoen SA, Reinecke AJ (1992) The temperature requirements of the epigeic earthworm species Eudrilus eugeniae (Oligochaeta) - a laboratory study. Soil Biol Biochem 24:1345–1350CrossRefGoogle Scholar
  64. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320CrossRefGoogle Scholar
  65. Yamani A, Bunel V, Antoine MH, Husson C, Stevigny C, Duez P, Elachouri M, Nortier J (2015) Substitution between Aristolochia and Bryonia genus in north-eastern Morocco: toxicological implications. J Ethnopharmacol 166:250–260CrossRefGoogle Scholar
  66. Yizhi D, Maoxin Z (2005) Influence of cucurbitacin B on feeding behavior and oviposition of Spodoptera exigua. Huanan Nongye Daxue Xuebao (China). J South China Agri Uni 26(2):56–58Google Scholar
  67. Zapata N, Budia F, Vinuela E, Medina P (2009) Antifeedant and growth inhibitory effects of extracts and drimanes of Drimys winteri stem bark against Spodoptera littoralis (Lep., Noctuidae). Ind Crop Prod 30:119–125CrossRefGoogle Scholar
  68. Zhao H-H, He J-T, Liu Z-X, Huang J-G (2018) Cytotoxicity of chemical constituents from Torricellia tiliifolia DC. on Spodoptera litura (SL-1) cells. Pest Biochem Physiol 144:19–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Athirstam Ponsankar
    • 1
  • Kitherian Sahayaraj
    • 1
  • Sengottayan Senthil-Nathan
    • 2
    Email author
  • Prabhakaran Vasantha-Srinivasan
    • 3
  • Sengodan Karthi
    • 2
  • Annamalai Thanigaivel
    • 2
  • Ganesan Petchidurai
    • 1
  • Mariappan Madasamy
    • 1
  • Wayne B. Hunter
    • 4
  1. 1.Crop Protection Research CentreSt. Xavier’s College (Autonomous)PalayamkottaiIndia
  2. 2.Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental SciencesManonmaniam Sundaranar UniversityTirunelveliIndia
  3. 3.Department of BiotechnologySt. Peter’s Institute of Higher Education and ResearchChennaiIndia
  4. 4.U.S. Horticultural Research LaboratoryUnited States Department of AgricultureFort PierceUSA

Personalised recommendations