Advertisement

Biodegradation of anthracene and different PAHs by a yellow laccase from Leucoagaricus gongylophorus

  • Priscila Tomie Leme Ike
  • Willian Garcia Birolli
  • Danilo Martins dos Santos
  • André Luiz Meleiro PortoEmail author
  • Dulce Helena Ferreira Souza
Research Article
  • 64 Downloads

Abstract

Laccases produced by Leucoagaricus gongylophorus act in lignocellulose degradation and detoxification processes. Therefore, the use of L. gongylophorus laccase (Lac1Lg) was proposed in this work for degradation of anthracene and others polycyclic aromatic hydrocarbons without the use of mediators. Degradation reactions were performed in buffer aqueous solution with 10 ppm of anthracene and other PAHs, Tween-20 in 0.25% v/v and a laccase preparation of 50 U. The optimum condition (pH 6.0 and 30 °C) was determined by response surface methodology with an excellent coefficient of determination (R2) of 0.97 and an adjusted coefficient of determination (R2adj) of 0.93. In addition, the employment of the mediator ABTS decreased the anthracene biodegradation from 44 ± 1% to 30 ± 1%. This optimum pH of 6.0 suggests that the reaction occurs by a hydrogen atom transfer mechanism. Additionally, in 24 h Lac1Lg biodegraded 72 ± 1% anthracene, 40 ± 3% fluorene and 25 ± 3% phenanthrene. The yellow laccase from L. gongylophorus biodegraded anthracene and produced anthrone and anthraquinone, which are interesting compounds for industrial applications. Moreover, this enzyme also biodegraded the PAHs phenanthrene and fluorene justifying the study of Lac1Lg for bioremediation of these compounds in the environment.

Keywords

Polycyclic aromatic hydrocarbons Organic pollutant Fluorene Phenanthrene Anthraquinone Anthrone 

Notes

Funding information

PTLI and WGB (grant no. 141656/2014-0) thank to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their scholarships, respectively. The authors also thank CNPq (grant no. 558062/2009-1) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant no. 2012/19934-0) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11356_2019_4197_MOESM1_ESM.pdf (114 kb)
ESM 1 (PDF 114 kb)

References

  1. Aljawish A, Chevalot I, Jasniewski J, Paris C, Scher J, Muniglia L (2014) Laccase-catalysed oxidation of ferulic acid and ethyl ferulate in aqueous medium: a green procedure for the synthesis of new compounds. Food Chem 145:1046–1054.  https://doi.org/10.1016/j.foodchem.2013.07.119 CrossRefGoogle Scholar
  2. Aylward FO, Burnum-Johnson KE, Tringe SG, Teiling C, Tremmel DM, Moeller JA, Scott JJ, Barry KW, Piehowski PD, Nicora CD, Malfatti SA, Monroe ME, Purvine SO, Goodwin LA, Smith RD, Weinstock GM, Gerardo NM, Suen G, Lipton MS, Currie CR (2013) Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl Environ Microbiol 79:3770–3778.  https://doi.org/10.1128/AEM.03833-12 CrossRefGoogle Scholar
  3. Aylward FO, Khadempour L, Tremmel DM, McDonald BR, Nicora CD, Wu S, Moore RJ, Orton DJ, Monroe ME, Piehowski PD, Purvine SO, Smith RD, Lipton MS, Burnum-Johnson KE, Currie CR (2015) Enrichment and broad bepresentation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants. PLoS One 10:e0134752.  https://doi.org/10.1371/journal.pone.0134752 CrossRefGoogle Scholar
  4. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736.  https://doi.org/10.1002/jctb.1276 CrossRefGoogle Scholar
  5. Bicalho KU (2011) Estudo fitoquímico de Virola sebifera associado ao controle de formigas cortadeiras. Dissertation, Universidade Federal de São CarlosGoogle Scholar
  6. Brewster CS, Sharma VK, Cizmas L, McDonald TJ (2018) Occurrence, distribution and composition of aliphatic and polycyclic aromatic hydrocarbons in sediment cores from the Lower Fox River, Wisconsin, US. Environ Sci Pollut Res 25:4974–4988.  https://doi.org/10.1007/s11356-017-0819-z CrossRefGoogle Scholar
  7. Bourbonnais R, Paice MG (1992) Demethylation and delignification of kraft pulp by Tramete-versicolor in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate). Appl Microbiol Biotechnol 36:823–827.  https://doi.org/10.1007/bf00172202 CrossRefGoogle Scholar
  8. Calado V, Montgomery D (2003) Planejamento de experimentos usando o statistica. e-papers, Rio de JaneiroGoogle Scholar
  9. Canas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705.  https://doi.org/10.1016/j.biotechadv.2010.05.002 CrossRefGoogle Scholar
  10. de la Rubia T, Linares A, Perez J, Munoz-Dorado J, Romera J, Martinez J (2002) Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. Res Microbiol 153:547–554.  https://doi.org/10.1016/S0923-2508(02)01357-8 CrossRefGoogle Scholar
  11. Chang YT, Lee JF, Liu KH, Liao YF, Yang V (2016) Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation. Environ Sci Pollut Res 23:4024–4035.  https://doi.org/10.1007/s11356-015-4248-6 CrossRefGoogle Scholar
  12. EPA (2016) Priority chemicals. https://archive.epa.gov/epawaste/hazard/wastemin/web/html/priority.html. Accessed 10 december 2017
  13. Farnet AM, Gil G, Ruaudel F, Chevremont AC, Ferre E (2009) Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a Mediterranean schlerophyllous litter. Geoderma 149:267–271.  https://doi.org/10.1016/j.geoderma.2008.12.011 CrossRefGoogle Scholar
  14. Filazzola MT, Sannino F, Rao MA, Gianfreda L (1999) Effect of various pollutants and soil-like constituents on laccase from Cerrena unicolor. J Environ Qual 28:1929–1938.  https://doi.org/10.2134/jeq1999.00472425002800060032x CrossRefGoogle Scholar
  15. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369.  https://doi.org/10.3389/fmicb.2016.01369 Google Scholar
  16. Hadibarata T, Khudhair AB, Salim MR (2012) Breakdown products in the metabolic pathway of anthracene degradation by a ligninolytic fungus Polyporus sp. S133. Water Air Soil Pollut 223:2201–2208.  https://doi.org/10.1007/s11270-011-1016-1 CrossRefGoogle Scholar
  17. Hadibarata T, Zubir M, Rubiyatno CTZ, Yusoff ARM, Salim MR, Fulazzaky MA, Seng B, Nugroho AE (2013) Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiol 58:385–391.  https://doi.org/10.1007/s12223-013-0221-2 CrossRefGoogle Scholar
  18. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic-hydrocarbons and dibenzo p-dioxins by Phanerochete chrysosporium ligninase. J Biol Chem 261:6948–6952Google Scholar
  19. Han MJ, Choi HT, Song HG (2004) Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol 42:94–98Google Scholar
  20. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15.  https://doi.org/10.1016/j.jhazmat.2009.03.137 CrossRefGoogle Scholar
  21. Huang WT, Tai R, Hseu RS, Huang CT (2011) Overexpression and characterization of a thermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris. Process Biochem 46:1469–1474.  https://doi.org/10.1016/j.procbio.2011.03.020 CrossRefGoogle Scholar
  22. Ike PTL, Moreira AC, de Almeida FG, Ferreira D, Birolli WG, Porto ALM, Souza DHF (2015) Functional characterization of a yellow laccase from Leucoagaricus gongylophorus. Springerplus 4(654):654.  https://doi.org/10.1186/s40064-015-1464-y CrossRefGoogle Scholar
  23. Jeon JR, Baldrian P, Murugesan K, Chang YS (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5:318–332.  https://doi.org/10.1111/j.1751-7915.2011.00273.x CrossRefGoogle Scholar
  24. Jordaan J (2005) Isolation and characterization of a novel thermostable and catalytically efficient laccase from Peniophora sp. Strain UD4. Dissertation, Rhodes UniversityGoogle Scholar
  25. Kudanga T, Nemadziva B, Le Roes-Hill M (2017) Laccase catalysis for the synthesis of bioactive compounds. Appl Microbiol Biotechnol 101:13–33.  https://doi.org/10.1007/s00253-016-7987-5 CrossRefGoogle Scholar
  26. Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L (1997) ‘Yellow’ laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448.  https://doi.org/10.1016/S0014-5793(97)00953-8 CrossRefGoogle Scholar
  27. Li XZ, Cheng Q, Wu YC, Feng YZ, Liu WW, Lin XG (2014a) Influencing factors and product toxicity of anthracene oxidation by fungal laccase. Pedosphere 24:359–366.  https://doi.org/10.1016/S1002-0160(14)60022-9 CrossRefGoogle Scholar
  28. Li XZ, Wang Y, Wu SJ, Qiu L, Gu L, Li J, Zhang B, Zhong W (2014b) Peculiarities of metabolism of anthracene and pyrene by laccase-producing fungus Pycnoporus sanguineus H1. Biotechnol Appl Biochem 61:549–554.  https://doi.org/10.1002/bab.1197 CrossRefGoogle Scholar
  29. Licht HHD, Boomsma JJ, Tunlid A (2014) Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat Commun 5:5675.  https://doi.org/10.1038/ncomms6675 CrossRefGoogle Scholar
  30. Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4:1694–1717Google Scholar
  31. Marim RA, Oliveira ACC, Marquezoni RS et al (2016) Use of sugarcane molasses by Pycnoporus sanguineus for the production of laccase for dye decolorization. Genet Mol Res 15:gmr15048972.  https://doi.org/10.4238/gmr15048972 CrossRefGoogle Scholar
  32. Montgomery DC (1991) Diseño y análisis de experimentos. Iberoamérica, Ciudad de MéxicoGoogle Scholar
  33. Munusamy US, Muniandy V, Abdullah S, Pandey N, A Jones EBG (2008) Biodegradation of polycyclic aromatic hydrocarbons by laccase of Pycnoporus sanguineus and toxicity evaluation of treated PAH. Biotechnol 7:669–677.  https://doi.org/10.3923/biotech.2008.669.677 CrossRefGoogle Scholar
  34. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, HobokenGoogle Scholar
  35. Pozdnyakova NN, Turkovskaya OV, Yudina EN, Rodakiewicz-Nowak Y (2006) Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Appl Biochem Microbiol 42:56–61.  https://doi.org/10.1134/S000368380601008X CrossRefGoogle Scholar
  36. Prasetyo EN, Semlitsch S, Nyanhongo GS, Lemmouchi Y, Guebitz GM (2016) Laccase oxidation and removal of toxicants released during combustion processes. Chemosphere 144:652–660.  https://doi.org/10.1016/j.chemosphere.2015.07.082 CrossRefGoogle Scholar
  37. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226.  https://doi.org/10.1016/j.tibtech.2006.03.006 CrossRefGoogle Scholar
  38. Sharma M, Chaurasia PK, Yadav A, Yadav RSS, Yadava S, Yadav KDS (2016) Purification and characterization of a thermally stable yellow laccase from Daedalea flavida MTCC-145 with higher catalytic performance towards selective synthesis of substituted benzaldehydes. Russ J Bioorgan Chem 42:59–68.  https://doi.org/10.1134/S1068162016010143 CrossRefGoogle Scholar
  39. Tien M, Kirk T (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Wood W, Kellogg S (eds) Methods in enzymologybiomass, part b, lignin, pectin, and chitin. Academic Press, San DiegoGoogle Scholar
  40. Wolfenden BS, Willson RL (1982) Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin 2(7):805–812.  https://doi.org/10.1039/P29820000805 CrossRefGoogle Scholar
  41. Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272:924–928.  https://doi.org/10.1074/jbc.272.2.924 CrossRefGoogle Scholar
  42. Zeng J, Zhu QH, Wu YC, Lin XG (2016) Oxidation of polycyclic aromatic hydrocarbons using Bacillus subtilis CotA with high laccase activity and copper independence. Chemosphere 148:1–7.  https://doi.org/10.1016/j.chemosphere.2016.01.019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Ciências Exatas e de Tecnologia, Departamento de QuímicaUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.Instituto Federal do ParanáParanaguáBrazil
  3. 3.Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations