Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 8, pp 7601–7613 | Cite as

Spatiotemporal distribution of organotin compounds in the coastal water of the Bahía Blanca estuary (Argentina)

  • Pamela Y. QuintasEmail author
  • Mónica B. Alvarez
  • Andrés H. Arias
  • Mariano Garrido
  • Jorge E. Marcovecchio
Research Article

Abstract

Several areas within the Bahía Blanca estuary (BBE), with different maritime traffic intensity, were studied in order to confirm the presence and assess the distribution of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in the water column. The organotin compounds (OTCs) were determined in the water samples—taken in summer, autumn, winter, and spring of 2014—by gas chromatography coupled to mass spectrometry after liquid-liquid extraction with hexane. The incidence of TBT throughout the whole sampling period indicated a continuous presence of this compound to the study area. However, in accordance with the butyltin degradation index (BDI), TBT was not recently introduced in the BBE. Furthermore, the average TBT levels exceeded the international guideline established by the Oslo-Paris commission (0.62 ng Sn L−1). As a result, certain biological effects could be expected to occur in sensitive species such as mussels. While DBT were below the detection limit in the 75% of the samples analyzed, MBT was detected in all the samples and no significant differences were found among the concentrations measured in the different seasons (Kruskal–Wallis test, p > 0.05). In addition, no correlations were found among the OTCs levels and the evaluated physiochemical parameters (Spearman coefficient, p > 0.05).

Keywords

Water column Bahía Blanca estuary Speciation TBT DBT MBT 

Notes

Acknowledgements

The authors would like to thank to CONICET and to the staff of IADO IV research vessel for the logistic and cooperation on board. This research was part of the Ph.D. thesis of Pamela Y. Quintas.

Funding information

This work was supported by a doctoral grant funded by the National Council of Scientific and Technological Research (CONICET-Argentina) [PIP D-738 2011]; the National Agency of Scientific and Technological Promotion (ANPCyT) [PICT 2015-0709]; and the Universidad Nacional del Sur [PGI 24/Q086 and PGI 24/ZQ12].

References

  1. Abbate MCL, Molinero JC, Guinder VA, Dutto MS, de Cao MSB, Etcheverry LAR, Pettigrosso RE, Carcedo MC, Hoffmeyer MS (2015) Microplankton dynamics under heavy anthropogenic pressure. The case of the Bahía Blanca Estuary, southwestern Atlantic Ocean. Mar Pollut Bull 95:305–314.  https://doi.org/10.1016/j.marpolbul.2015.03.026 CrossRefGoogle Scholar
  2. Almeida AC, Wagener ADL, Maia CB, Miekeley N (2004) Speciation of organotin compounds in sediment cores from Guanabara Bay, Rio de Janeiro (Brazil) by gas chromatography–pulsed flame photometric detection. Appl Organomet Chem 18:694–704.  https://doi.org/10.1002/aoc.661 CrossRefGoogle Scholar
  3. Al-shatri MA, Nuhu AA, Basheer C, Al-Arfaj A, Al-Tawabini B (2015) Assessment of tributyltin and triphenyltin compounds and their main degradation products in Saudi coastal waters. Arab J Sci Eng 40(10):2959–2967CrossRefGoogle Scholar
  4. Alzieu C (2000) Environmental impact of TBT: the French experience. Sci Total Environ 258:99–102.  https://doi.org/10.1016/S0048-9697(00)00510-6 CrossRefGoogle Scholar
  5. Artifon V, de Castro ÍB, Fillmann G (2016) Spatiotemporal appraisal of TBT contamination and imposex along a tropical bay (Todos os Santos Bay, Brazil). Environ Sci Pollut Res 23:16047–16055.  https://doi.org/10.1007/s11356-016-6745-7 CrossRefGoogle Scholar
  6. Baldini MD, Cubitto MA, Chiarello MN, Cabezalí CB (1999) Water quality for aquaculture development in Bahía Blanca estuary. Argentina Bacteriological studies Revista Argentina de Microbiología 31:19–24 10327456Google Scholar
  7. Batista RM, de Castro IB, Fillmann G (2016) Imposex and butyltin contamination still evident in Chile after TBT global ban. Sci Total Environ 566-567:446–453.  https://doi.org/10.1016/j.scitotenv.2016.05.039 CrossRefGoogle Scholar
  8. Berg M, Arnold CG, Müller SR, Mühlemann J, Schwarzenbach RP (2001) Sorption and desorption behavior of organotin compounds in sediment−pore water systems. Environ Sci Technol 35:3151–3157.  https://doi.org/10.1021/es010010f CrossRefGoogle Scholar
  9. Bhosle NB, Garg A, Harji R, Jadhav S, Sawant SS, Krishnamurthy V, Anil C (2006) Butyltins in the sediments of Kochi and Mumbai harbours, west coast of India. Environ Int 32:252–258.  https://doi.org/10.1016/j.envint.2005.08.020 CrossRefGoogle Scholar
  10. Buzzi NS, Marcovecchio JE (2016) A baseline study of the metallothioneins induction and its reversibility in Neohelice granulata from the Bahía Blanca Estuary (Argentina). Mar Pollut Bull 112:452–458.  https://doi.org/10.1016/j.marpolbul.2016.07.007 CrossRefGoogle Scholar
  11. Carbone ME, Spetter CV, Marcovecchio JE (2016) Seasonal and spatial variability of macronutrients and chlorophyll a based on GIS in the South American estuary (Bahía Blanca, Argentina). Environ Earth Sci 75.  https://doi.org/10.1007/s12665-016-5516-6
  12. Cima F, Craig PJ, Harrington C (2003) Organotin compounds in the environment. In: Craig PJ (ed) Organometallic compounds in the environment. Wiley, Chichester, pp 101–149CrossRefGoogle Scholar
  13. Commendatore MG, Franco MA, Gomes Costa P, de Castro IB, Fillmann G, Bigatti G, Esteves JL, Nievas ML (2015) BTs, PAHs, OCPs and PCBs in sediments and bivalve mollusks in a mid-latitude environment from the Patagonian coastal zone. In: Environmental Toxicology and Chemistry, vol 34, pp 2750–2763.  https://doi.org/10.1002/etc.3134 Google Scholar
  14. De Castro ÍB, Fillmann G (2012) High tributyltin and imposex levels in the commercial muricid Thais chocolata from two Peruvian harbor areas. Environ Toxicol Chem 31:955–960.  https://doi.org/10.1002/etc.1794 CrossRefGoogle Scholar
  15. De Castro ÍB, Perina FC, Fillmann G (2012) Organotin contamination in South American coastal areas. Environ Monit Assess 184:1781–1799.  https://doi.org/10.1007/s10661-011-2078-7 CrossRefGoogle Scholar
  16. De Waisbaum RG, Rodriguez C, Nudelman NS (2010) Determination of TBT in water and sediment samples along the Argentine Atlantic coast. Environ Technol 31:1335–1342.  https://doi.org/10.1080/09593331003720615 CrossRefGoogle Scholar
  17. Del Brio F, Commendatore M, de Castro IB, Gomes Costa P, Fillmann G, Bigatti G (2016) Distribution and bioaccumulation of butyltins in the edible gastropod Odontocymbiola magellanica. Mar Biol Res 12:608–620.  https://doi.org/10.1080/17451000.2016.1169296 CrossRefGoogle Scholar
  18. Diez S, Abalos M, Bayona JM (2002) Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Res 36:905–918.  https://doi.org/10.1016/S0043-1354(01)00305-0 CrossRefGoogle Scholar
  19. Dominguez LA, Caldas SS, Primel EG, Fillmann G (2014) The influence of salinity and matrix effect in the determination of antifouling biocides in estuarine waters of Patos Lagoon (southern Brazil). J Braz Chem Soc.  https://doi.org/10.5935/0103-5053.20140110
  20. EURACHEM (1998) The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics 75 LGC (Teddington) Ltd, LondonGoogle Scholar
  21. Fang L, Xu C, Li J, Borggaard OK, Wang D (2017) The importance of environmental factors and matrices in the adsorption, desorption, and toxicity of butyltins: a review. Environ Sci Pollut Res 24:9159–9173.  https://doi.org/10.1007/s11356-017-8449-z CrossRefGoogle Scholar
  22. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 73:122–159.  https://doi.org/10.1016/j.aquatox.2005.09.009 CrossRefGoogle Scholar
  23. Fernandez MA, Wagener ADLR, Limaverde AM, Scofield ADL, Pinheiro FM, Rodrigues E (2005) Imposex and surface sediment speciation: a combined approach to evaluate organotin contamination in Guanabara Bay, Rio de Janeiro, Brazil. Mar Environ Res 59:435–452.  https://doi.org/10.1016/j.marenvres.2004.07.001 CrossRefGoogle Scholar
  24. Filipkowska A, Lubecki L (2016) Endocrine disruptors in blue mussels and sediments from the Gulf of Gdańsk (Southern Baltic). Environ Sci Pollut Res 23:13864–13876.  https://doi.org/10.1007/s11356-016-6524-5 CrossRefGoogle Scholar
  25. Finnegan C, Ryan D, Enright AM, Garcia-Cabellos G (2018) A review of strategies for the detection and remediation of organotin pollution. Crit Rev Environ Sci Technol 48:77–118.  https://doi.org/10.1080/10643389.2018.1443669 CrossRefGoogle Scholar
  26. Freije, R.H., Spetter, C.V., Marcovecchio, J.E., Popovich, C.A., Botté, S.E., Negrin, V.L., Arias, A.H., Delucchi, F., & Astesuain, R.O. (2008) Water chemistry and nutrients of the Bahía Blanca Estuary. In R Neves, J Baretta, M. Mateus (Eds.) Perspectives on Integrated Coastal Zone Management in South America, Part C: From shallow water to the deep fjord: the study sites, (pp. 241-254), IST PressGoogle Scholar
  27. Furdek M, Vahčič M, Ščančar J, Milačič R, Kniewald G, Mikac N (2012) Organotin compounds in seawater and Mytilus galloprovincialis mussels along the Croatian Adriatic Coast. Mar Pollut Bull 64:189–199.  https://doi.org/10.1016/j.marpolbul.2011.12.009 CrossRefGoogle Scholar
  28. Guinder VA, López-Abbate MC, Berasategui AA, Negrin VL, Zapperi G, Pratolongo PD, Fernández Severini MD, Popovich CA (2015) Influence of the winter phytoplankton bloom on the settled material in a temperate shallow estuary. Oceanologia 57:50–60.  https://doi.org/10.1016/j.oceano.2014.10.002 CrossRefGoogle Scholar
  29. Guinder VA, Popovich CA, Perillo GM (2009) Particulate suspended matter concentrations in the Bahía Blanca Estuary, Argentina: implication for the development of phytoplankton blooms. Estuar Coast Shelf Sci 85:157–165.  https://doi.org/10.1016/j.ecss.2009.05.022 CrossRefGoogle Scholar
  30. Higuera-Ruiz R, Elorza J (2011) Shell thickening and chambering in the oyster Crassostrea gigas: natural and anthropogenic influence of tributyltin contamination. Environ Technol 32:583–591.  https://doi.org/10.1080/09593330.2010.506201 CrossRefGoogle Scholar
  31. Hoch M (2001) Organotin compounds in the environment-an overview. Appl Geochem 16:719–743.  https://doi.org/10.1016/S0883-2927(00)00067-6 CrossRefGoogle Scholar
  32. Hoch M, Alonso-Azcarate J, Lischick M (2003) Assessment of adsorption behavior of dibutyltin (DBT) to clay-rich sediments in comparison to the highly toxic tributyltin (TBT). Environ Pollut 123:217–227.  https://doi.org/10.1016/S0269-7491(02)00402-5 CrossRefGoogle Scholar
  33. Hoch M, Schwesig D (2004) Parameters controlling the partitioning of tributyltin (TBT) in aquatic systems. Appl Geochem 19:323–334.  https://doi.org/10.1016/S0883-2927(03)00131-8 CrossRefGoogle Scholar
  34. Hongxia L, Guolan H, Shugui D (1996) Transport of butyltins at the water-air interface and the adsorptive behavior of tributyltin in the surface microlayer. Toxicol Environ Chem 55:257–265.  https://doi.org/10.1080/02772249609358340 CrossRefGoogle Scholar
  35. Horiguchi T (2009) The Endocrine-Disrupting Effect of Organotin Compounds for Aquatic Organisms. In: Arai T, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of Antifouling Biocides. Springer, Tokyo, pp 111–124CrossRefGoogle Scholar
  36. Ikonomou MG, Fernandez MP, He T, Cullon D (2002) Gas chromatography–high-resolution mass spectrometry based method for the simultaneous determination of nine organotin compounds in water, sediment and tissue. J Chromatogr A 975:319–333.  https://doi.org/10.1016/S0021-9673(02)01194-9 CrossRefGoogle Scholar
  37. IUPAC International Union of Pure and Applied Chemistry (2002) Analytical, applied, clinical, inorganic, and physical chemistry divisions. Interdivisional working party for harmonization of quality assurance schemes for analytical laboratories. Pure Appl Chem 74:835–855CrossRefGoogle Scholar
  38. Jagtap JT, Shejule KB, Jaiswal DP (2011) Acute toxicity study of tributyltin chloride on the freshwater bivalve, Lamellidens marginalis. World J Fish Mar Sci 3:100–103Google Scholar
  39. Kim NS, Shim WJ, Yim UH, Hong SH, Ha SY, Han GM, Shin KH (2014) Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar Pollut Bull 78:201–208.  https://doi.org/10.1016/j.marpolbul.2013.10.043 CrossRefGoogle Scholar
  40. Lam NH, Jeong HH, Kang SD, Kim DJ, Ju MJ, Horiguchi T, Cho HS (2017) Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: contamination profiles and risk assessment. Mar Pollut Bull 121:302–312.  https://doi.org/10.1016/j.marpolbul.2017.06.026 CrossRefGoogle Scholar
  41. Lee CC, Hsieh CY, Tien CJ (2006) Factors influencing organotin distribution in different marine environmental compartments, and their potential health risk. Chemosphere 65:547–559.  https://doi.org/10.1016/j.chemosphere.2006.02.037 CrossRefGoogle Scholar
  42. Liu LL, Wang JT, Chung KN, Leu MY, Meng PJ (2011) Distribution and accumulation of organotin species in seawater, sediments and organisms collected from a Taiwan mariculture area. Marine pollution bulletin.  https://doi.org/10.1016/j.marpolbul.2011.02.003
  43. Maciel DC, de Castro ÍB, de Souza JRB, Yogui GT, Fillmann G, Zanardi-Lamardo E (2018) Assessment of organotins and imposex in two estuaries of the northeastern Brazilian coast. Mar Pollut Bull 126:473–478.  https://doi.org/10.1016/j.marpolbul.2017.11.061 CrossRefGoogle Scholar
  44. Manzo S, Ansanelli G, Parrella L, Di Landa G, Massanisso P, Schiavo S, Minopoli C, Boggia R, Aleksie P, Tabaku A (2014) First evaluation of the threat posed by antifouling biocides in the Southern Adriatic Sea. Environ Sci Process Impacts 16:1981–1993.  https://doi.org/10.1039/c3em00724c CrossRefGoogle Scholar
  45. Marcovecchio JE (2000) Land-based sources and activities affecting the marine environment at the upper southwestern Atlantic Ocean: an overview. UNEP Regional Seas Reports & Studies 170:67Google Scholar
  46. Martínez ML, Piol MN, Nudelman NS, Guerrero NRV (2017) Tributyltin bioaccumulation and toxic effects in freshwater gastropods Pomacea canaliculata after a chronic exposure: field and laboratory studies. Ecotoxicology 26:691–701.  https://doi.org/10.1007/s10646-017-1801-8 CrossRefGoogle Scholar
  47. Mattos Y, Stotz WB, Romero MS, Bravo M, Fillmann G, de Castro ÍB (2017) Butyltin contamination in Northern Chilean coast: is there a potential risk for consumers? Sci Total Environ 595:209–217.  https://doi.org/10.1016/j.scitotenv.2017.03.264 CrossRefGoogle Scholar
  48. Meador JP (2011) In: Nelson Beyer W, Meador JP (eds) Organotins in aquatic biota: occurrence in tissue and toxicological significance, in Environmental Contaminants in Biota: Interpreting Tissue Concentrations, 2nd edn. CRC, 2011, Boca Raton, pp 255–284Google Scholar
  49. Michel P, Averty B, Andral B, Chiffoleau JF, Galgani F (2001) Tributyltin along the coasts of Corsica (Western Mediterranean): a persistent problem. Mar Pollut Bull 42:1128–1132.  https://doi.org/10.1016/S0025-326X(01)00101-1 CrossRefGoogle Scholar
  50. Montecinos A, Díaz A, Aceituno P (2000) Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J Clim 13:746–758.  https://doi.org/10.1175/1520-0442(2000)013<0746:SDAPOR>2.0.CO;2 CrossRefGoogle Scholar
  51. Ohji M, Arai T, Miyazaki N (2007) Comparison of organotin accumulation in the masu salmon Oncorhynchus masou accompanying migratory histories. Estuar Coast Shelf Sci 72:721–731.  https://doi.org/10.1016/j.ecss.2006.12.004 CrossRefGoogle Scholar
  52. Okoro HK, Fatoki OS, Adekola FA, Ximba BJ, Snyman RG (2016) Spatio-temporal variation of organotin compounds in seawater and sediments from Cape Town harbour, South Africa using gas chromatography with flame photometric detector (GC-FPD). Arab J Chem 9:95–104.  https://doi.org/10.1016/j.arabjc.2013.05.014 CrossRefGoogle Scholar
  53. Okoro HK, Fatoki OS, Adekola FA, Ximba BJ, Snyman RG, Opeolu B (2011) Human exposure, biomarkers and fate of organotins in the environment. Rev Environ Contam Toxicol.  https://doi.org/10.1007/978-1-4419-9860-6_2
  54. OSPAR (2004) OSPAR/ICES Workshop on the evaluation and update of background reference concentrations (B/RCs) and ecotoxicological assessment criteria (EACs) and how these assessment tools should be used in assessing contaminants in water, sediment and biota, Final report, OSPAR commission. http://www.ospar.org>
  55. Perillo GME, Piccolo MC, Parodi ER, Freije RH (2001) The Bahía Blanca estuary ecosystem: a review. In: Seelinger U, LacerdaKjerve LB (eds) Coastal Marine Ecosystems of Latin America. Springer, Verlag, pp 205–217.  https://doi.org/10.1007/978-3-662-04482-7_15 CrossRefGoogle Scholar
  56. Pettigrosso RE, García MD, Uibrig R, Dutto MS, López Morales M, Hoffmeyer MS (2016) Mixotrophic ciliate dynamics in two zones of a temperate and highly turbid estuary in South America, Argentina. Ecol Austral 26:107–119Google Scholar
  57. Piccolo MC, Perillo GME (1990) Physical characteristics of the Bahía Blanca estuary (Argentina). Estuar Coast Shelf Sci 31:303–317.  https://doi.org/10.1016/0272-7714(90)90106-2 CrossRefGoogle Scholar
  58. Piccolo, M.C., Perillo, G.M.E., & Melo, W.D. (2008) The Bahía Blanca Estuary: an integrated overview of its geomorphology and dynamics. In R Neves, J Baretta, M Mateus, (Eds.). Perspectives on Integrated Coastal Zone Management in South America, Part C: From shallow water to the deep fjord: the study sites (pp. 219–229). IST PressGoogle Scholar
  59. Popovich CA, Marcovecchio JE (2008) Spatial and temporal variability of phytoplankton and environmental factors in a temperate estuary of South America (Atlantic coast, Argentina). Cont Shelf Res 28:236–244.  https://doi.org/10.1016/j.csr.2007.08.001 CrossRefGoogle Scholar
  60. Quintas PY, Arias AH, Oliva AL, Domini CE, Alvarez MB, Garrido M, Marcovecchio JE (2017) Organotin compounds in Brachidontes rodriguezii mussels from the Bahía Blanca Estuary, Argentina. Ecotoxicol Environ Saf 145:518–527.  https://doi.org/10.1016/j.ecoenv.2017.07.052 CrossRefGoogle Scholar
  61. Ranke J, Jastorff B (2000) Multidimensional risk analysis of antifouling biocides. Environ Sci Pollut Res 7:105–114.  https://doi.org/10.1065/espr199910.003 CrossRefGoogle Scholar
  62. Rüdel H (2003) Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf 56:180–189.  https://doi.org/10.1016/S0147-6513(03)00061-7 CrossRefGoogle Scholar
  63. Sakultantimetha A, Keenan HE, Beattie TK, Bangkedphol S, Cavoura O (2011) Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere 83:680–686.  https://doi.org/10.1016/j.chemosphere.2011.02.024 CrossRefGoogle Scholar
  64. Sant’Anna BS, Santos DM, Marchi MRRD, Zara FJ, Turra A (2014) Surface-sediment and hermit-crab contamination by butyltins in southeastern Atlantic estuaries after ban of TBT-based antifouling paints. Environ Sci Pollut Res 21:6516–6524.  https://doi.org/10.1007/s11356-014-2521-8 CrossRefGoogle Scholar
  65. Sonak S, Pangam P, Gigiyan A, Hawaldar K (2009) Implication of the ban on organotins for protection of global coastal and marine ecology. J Environ Manag 90:S96–S108.  https://doi.org/10.1016/j.jenvman.2008.08.017 CrossRefGoogle Scholar
  66. Sousa A, Ikemoto T, Takahashi S, Barroso C, Tanabe S (2009) Distribution of synthetic organotins and total tin levels in Mytilus galloprovincialis along the Portuguese coast. Mar Pollut Bull 58:1130–1136.  https://doi.org/10.1016/j.marpolbul.2009.04.007 CrossRefGoogle Scholar
  67. Tessier E, Amouroux D, Morin A, Christian L, Thybaud E, Vindimian E, Donard OF (2007) (Tri) Butyltin biotic degradation rates and pathways in different compartments of a freshwater model ecosystem. Sci Total Environ 388:214–233.  https://doi.org/10.1016/j.scitotenv.2007.08.047 CrossRefGoogle Scholar
  68. Tolosa I, Readman JW, Blaevoet A, Ghilini S, Bartocci J, Horvat M (1996) Contamination of Mediterranean (Cote d’Azur) coastal waters by organotins and Irgarol 1051 used in antifouling paints. Mar Pollut Bull 32:335–341.  https://doi.org/10.1016/0025-326X(96)00013-6 CrossRefGoogle Scholar
  69. UNEP/IOC/IAEA (1994) Determination of organotins in environmental samples. Ref Methods Mar Pollut Stud 59:23–30 UNEPGoogle Scholar
  70. van Den Heuvel-Greve MJ, Szczybelski AS, van Den Brink NW, Kotterman MJ, Kwadijk CJ, Evenset A, Murk AJ (2016) Low organotin contamination of harbour sediment in Svalbard. Polar Biol 39:1699–1709.  https://doi.org/10.1007/s00300-016-1907-0 CrossRefGoogle Scholar
  71. Vidal JL, Vega AB, Arrebola FJ, González-Rodríguez MJ, Sanchez MC, Frenich AG (2003) Trace determination of organotin compounds in water, sediment and mussel samples by low-pressure gas chromatography coupled to tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2099–2106.  https://doi.org/10.1002/rcm.1152 CrossRefGoogle Scholar
  72. Wang X, Fang C, Hong H, Wang WX (2010) Gender differences in TBT accumulation and transformation in Thais clavigera after aqueous and dietary exposure. Aquat Toxicol 99:413–422.  https://doi.org/10.1016/j.aquatox.2010.06.001 CrossRefGoogle Scholar
  73. Wang X, Hong H, Zhao D, Hong L (2008) Environmental behavior of organotin compounds in the coastal environment of Xiamen, China. Mar Pollut Bull 57:419–424.  https://doi.org/10.1016/j.marpolbul.2008.04.034 CrossRefGoogle Scholar
  74. Yañez J, Riffo P, Mansilla HD, Bravo M, Quiroz W, Santander P (2016) Speciation analysis of organotin compounds (OTCs) by a simultaneous hydride generation–liquid/liquid extraction and GC–MS determination. Microchem J 126:460–465.  https://doi.org/10.1016/j.microc.2016.01.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Argentino de Oceanografía (IADO)Universidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina
  2. 2.Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID)Instituto Interdisciplinario de Ciencias Básicas (ICB), UNCUYO-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de CuyoMendozaArgentina
  3. 3.Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  4. 4.Instituto de Química del Sur (INQUISUR)Universidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina
  5. 5.Universidad Tecnológica Nacional (UTN)-FRBBBahía BlancaArgentina
  6. 6.Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino (FASTA)Mar del PlataArgentina

Personalised recommendations