Black carbon: source apportionment and its implications on CCN activity over a rural region in Western Ghats, India

  • Vyoma Singla
  • Subrata MukherjeeEmail author
  • Akanksha S. Kashikar
  • Pramod D. Safai
  • Govindan Pandithurai
Research Article


This study presents the characteristics of black carbon aerosol (BC) over a high-altitude site, Mahabaleshwar during the monsoon season. The mass concentration of BC exhibits a morning peak and a daytime build-up with a mean mass concentration of 303 ± 142 ng m−3. The simultaneous measurements of aerosol particle number concentration (PNC), cloud condensation nuclei concentration (CCN), and non-refractory particulate matter less than 1 μm size (NR-PM1) were also made by using a Wide-Range Aerosol Spectrometer (WRAS), CCN counter and Aerosol Chemical Speciation Monitor (ACSM) respectively. The source apportionment using wavelength-dependent light absorption model reveals the dominance by wood burning sources during morning hours and traffic sources during remaining hours of the day. The diurnal variation of PNC follows the variability of BC mass concentration. However, CCN concentrations were high during the morning hours coinciding with the increased fractional contribution of organics. The k-means clustering coupled with fuzzy algorithm highlights the effect of different sources on aerosol size distribution. On the basis of size distribution curve, the 3 clusters were attributed to wood burning (mean diameter range: 50–100 nm), traffic (30–50 nm), and background aerosols (65–95 nm). The combined analysis of k-means clustering, fractional contribution of organics, and kappa variation suggests that higher CCN concentration during morning is mainly attributed to probable emission of the water-soluble organic/inorganic compounds from wood burning.


BC Aethalometer ACSM Wood burning Fossil fuel burning CCN 



The data used in this study are from the data repository of HACPL, part of IITM, Pune. Authors are thankful to the Director, IITM for his support and encouragement. Vyoma Singla extends special thanks to DST, SERB for N-PDF fellowship (Fellowship number: PDF/2017/002428) and Director, IITM for providing all the facilities.

Funding information

HACPL is fully funded by the Ministry of Earth Sciences (MoES) (MoES/MC4/PDTC/HACPL), Government of India, New Delhi.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_4162_MOESM1_ESM.docx (551 kb)
ESM 1 (DOCX 550 kb)


  1. Ångström A (1964) The parameters of atmospheric turbidity. Tellus16: 64–75.
  2. Andreae MO, Talbot RW, Andreae TW, Harriss RC (1988) Formic and acetic acid over the Central Amazon region, Brazil: 1. Dry season. J Geophys Res Atmos 93(D2):1616–1624. CrossRefGoogle Scholar
  3. Badarinath KV, Kharol SK, Chand TK, Parvathi YG, Anasuya T, Jyothsna AN (2007) Variations in black carbon aerosol, carbon monoxide and ozone over an urban area of Hyderabad, India, during the forest fire season. Atmos Res 85(1):18–26. CrossRefGoogle Scholar
  4. Beegum SN, Moorthy KK, Babu SS, Satheesh SK, Vinoj V, Badarinath KV, Safai PD, Devara PC, Singh S, Dumka UC, Pant P (2009) Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmos Environ 43(5):1071–1078. CrossRefGoogle Scholar
  5. Begam GR, Vachaspati CV, Ahammed YN, Kumar KR, Babu SS, Reddy RR (2016) Measurement and analysis of black carbon aerosols over a tropical semi-arid station in Kadapa, India. Atmos Res 171:77–91. CrossRefGoogle Scholar
  6. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. CrossRefGoogle Scholar
  7. Crippa M, DeCarlo PF, Slowik JG, Mohr C, Heringa MF, Chirico R, Poulain L, Freutel F, Sciare J, Cozic J, Di Marco CF (2013) Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmos Chem Phys 13(2):961–981. CrossRefGoogle Scholar
  8. Dumka UC, Moorthy KK, Kumar R, Hegde P, Sagar R, Pant P, Singh N, Babu SS (2010) Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos Res 96(4):510–521. CrossRefGoogle Scholar
  9. Dusek U, Frank GP, Curtius J, Drewnick F, Schneider J, Kürten A, Rose D, Andreae MO, Borrmann S, Pöschl U (2010) Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophys Res Lett 37(3):L03804. CrossRefGoogle Scholar
  10. Gadhavi H, Jayaraman A (2010) Absorbing aerosols: contribution of biomass burning and implications for radiative forcing. Ann Geophys 28:103–111. Accessed 18 Jan 2010CrossRefGoogle Scholar
  11. Hansen AD, Rosen H, Novakov T (1984) The aethalometer - an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ 36:191–196. CrossRefGoogle Scholar
  12. Hansen AD, Bodhaine BA, Dutton EG, Schnell RC (1988) Aerosol black carbon measurements at the South Pole: initial results, 1986–1987. Geophys Res Lett 15(11):1193–1196. CrossRefGoogle Scholar
  13. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J Royal Stat Soc Series C (Applied Statistics) 28(1):100–108. Google Scholar
  14. Helas G, Bingemer H, Andreae MO (1992) Organic acids over equatorial Africa: results from DECAFE 88. J Geophys Res Atmos 97(D6):6187–6193. CrossRefGoogle Scholar
  15. Hudson JG, Hallett J, Rogers CF (1991) Field and laboratory measurements of cloud-forming properties of combustion aerosols. J Geophys Res Atmos 96(D6):10847–10859. CrossRefGoogle Scholar
  16. Khwaja HA (1995) Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmos Environ 29(1):127–139. CrossRefGoogle Scholar
  17. Kirchstetter TW, Novakov T, Hobbs PV (2004) Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res Atmos 109(D21208):21208. Google Scholar
  18. Krasowsky TS, McMeeking GR, Wang D, Sioutas C, Ban-Weiss GA (2016) Measurements of the impact of atmospheric aging on physical and optical properties of ambient black carbon particles in Los Angeles. Atmos Environ 142:496–504. CrossRefGoogle Scholar
  19. Leena PP, Pandithurai G, Anilkumar V, Murugavel P, Sonbawne SM, Dani KK (2016) Seasonal variability in aerosol, CCN and their relationship observed at a high altitude site in Western Ghats. Meteorog Atmos Phys 128(2):143–153. CrossRefGoogle Scholar
  20. Lihavainen H, Kerminen VM, Komppula M, Hatakka J, Aaltonen V, Kulmala M, Viisanen Y (2003) Production of “potential” cloud condensation nuclei associated with atmospheric new-particle formation in northern Finland. J Geophys Res Atmos 108(D24):4782. CrossRefGoogle Scholar
  21. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137CrossRefGoogle Scholar
  22. Moorthy KK, Babu SS, Sunilkumar SV, Gupta PK, Gera BS (2004) Altitude profiles of aerosol BC, derived from aircraft measurements over an inland urban location in India. Geophys Res Lett 31(22):L22103. CrossRefGoogle Scholar
  23. Mukherjee S, Singla V, Pandithurai G, Safai PD, Meena GS, Dani KK, Kumar VA (2018) Seasonal variability in chemical composition and source apportionment of sub-micron aerosol over a high altitude site in Western Ghats, India. Atmos Environ 180:79–92. CrossRefGoogle Scholar
  24. Ng NL, Herndon SC, Trimborn A, Canagaratna MR, Croteau PL, Onasch TB, Sueper D, Worsnop DR, Zhang Q, Sun YL, Jayne JT (2011) An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Science and Technology 45(7):780–94.
  25. Novakov T, Corrigan CE (1996) Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophys Res Lett 23(16):2141–2144. CrossRefGoogle Scholar
  26. Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemometr Intell Lab Sys 37(1):23–35. CrossRefGoogle Scholar
  27. Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126. CrossRefGoogle Scholar
  28. Paliwal U, Sharma M, Burkhart JF (2016) Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis. Atmos Chem Phys 16:12457–12476. CrossRefGoogle Scholar
  29. Park SS, Hansen AD, Cho SY (2010) Measurement of real time black carbon for investigating spot loading effects of Aethalometer data. Atmos Environ 44(11):1449–1455. CrossRefGoogle Scholar
  30. Petters MD, Carrico CM, Kreidenweis SM, Prenni AJ, DeMott PJ, Collett JL, Moosmüller H (2009) Cloud condensation nucleation activity of biomass burning aerosol. J Geophys Res Atmos 114(D22): 205.
  31. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227CrossRefGoogle Scholar
  32. Rehman IH, Ahmed T, Praveen PS, Kar A, Ramanathan V (2011) Black carbon emissions from biomass and fossil fuels in rural India. Atmos Chem Phys 11:7289–7299. CrossRefGoogle Scholar
  33. Safai PD, Devara PC, Raju MP, Vijayakumar K, Rao PS (2014) Relationship between black carbon and associated optical, physical and radiative properties of aerosols over two contrasting environments. Atmos Res 149:292–299. CrossRefGoogle Scholar
  34. Sandradewi J, Prévôt AS, Weingartner E, Schmidhauser R, Gysel M, Baltensperger U (2008) A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmos Environ 42(1):101–112. CrossRefGoogle Scholar
  35. Sarkar C, Chatterjee A, Singh AK, Ghosh SK, Raha S (2015) Characterization of black carbon aerosols over Darjeeling-A high altitude Himalayan station in eastern India. Aerosol Air Qual Res 15:465–478. CrossRefGoogle Scholar
  36. Saud T, Mandal TK, Gadi R, Singh DP, Sharma SK, Saxena M, Mukherjee A (2011) Emission estimates of particulate matter (PM) and trace gases (SO2, NO and NO2) from biomass fuels used in rural sector of Indo-Gangetic Plain, India. Atmos Environ 45(32):5913–5923. CrossRefGoogle Scholar
  37. Sen A, Mandal TK, Sharma SK, Saxena M, Gupta NC, Gautam R, Gupta A, Gill T, Rani S, Saud T, Singh DP (2014) Chemical properties of emission from biomass fuels used in the rural sector of the western region of India. Atmos Environ 99:411–424. CrossRefGoogle Scholar
  38. Shindell D, Kuylenstierna JC, Vignati E, van Dingenen R, Amann M, Klimont Z, Anenberg SC, Muller N, Janssens-Maenhout G, Raes F, Schwartz J (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335(6065):183–189. CrossRefGoogle Scholar
  39. Singla V, Mukherjee S, Safai PD, Meena GS, Dani KK, Pandithurai G (2017) Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India. Atmos Environ 158:148–159. CrossRefGoogle Scholar
  40. Talbot RW, Beecher KM, Harriss RC, Cofer WR (1988) Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site. J Geophys Res Atmos 93(D2):1638–1652. CrossRefGoogle Scholar
  41. TEDDY: TERI Energy Data Directory Yearbook, 2009. The Energy Research Institute, New Delhi, IndiaGoogle Scholar
  42. Ulbrich IM, Canagaratna MR, Zhang Q, Worsnop DR, Jimenez JL (2009) Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys 9:2891–2918. CrossRefGoogle Scholar
  43. Vaishya A, Singh P, Rastogi S, Babu SS (2017) Aerosol black carbon quantification in the central Indo-Gangetic plain: seasonal heterogeneity and source apportionment. Atmos Res 185:13–21. CrossRefGoogle Scholar
  44. Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307(5714):1454–1456. CrossRefGoogle Scholar
  45. Virkkula A, Mäkelä T, Hillamo R, Yli-Tuomi T, Hirsikko A, Hämeri K, Koponen IK (2007) A simple procedure for correcting loading effects of aethalometer data. J Air Waste Manage Assoc 57(10):1214–1222. CrossRefGoogle Scholar
  46. Wang Y, Zhuang G, Chen S, An Z, Zheng A (2007) Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China. Atmos Res 84(2):169–181. CrossRefGoogle Scholar
  47. Wang Y, Hopke PK, Utell MJ (2011) Urban-scale spatial-temporal variability of black carbon and winter residential wood combustion particles. Aerosol Air Qual Res 11:473–481. CrossRefGoogle Scholar
  48. Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aerosol Sci 34(10):1445–1463. CrossRefGoogle Scholar
  49. World Health Organization (2012) WHO expert committee on specifications for pharmaceutical preparations. World Health Organ Tech Rep Ser 970:1Google Scholar
  50. Yu S (2000) Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): a review. Atmos Res 53(4):185–217. CrossRefGoogle Scholar
  51. Zhang Q, Jimenez JL, Canagaratna MR, Ulbrich IM, Ng NL, Worsnop DR, Sun Y (2011) Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Anal Bioanal Chem 401(10):3045–3067. CrossRefGoogle Scholar
  52. Zotter P, Herich H, Gysel M, El-Haddad I, Zhang Y, Močnik G, Hüglin C, Baltensperger U, Szidat S, Prévôt AS (2017) Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos Chem Phys 17:4229–4249. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vyoma Singla
    • 1
  • Subrata Mukherjee
    • 1
    Email author
  • Akanksha S. Kashikar
    • 2
  • Pramod D. Safai
    • 1
  • Govindan Pandithurai
    • 1
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Savitribai Phule Pune UniversityPuneIndia

Personalised recommendations