Environmental Science and Pollution Research

, Volume 26, Issue 8, pp 7390–7404 | Cite as

Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review

  • Weicheng ZhangEmail author
  • Song Ke
  • Caiyun Sun
  • Xin Xu
  • Jibao Chen
  • Lunguang YaoEmail author
Review Article


The fate and risk assessment of silver nanoparticles (Ag NPs) is an important environmental health issue. The toxic effects, mechanisms, and modes of action of Ag NPs on aquatic organisms have been extensively determined in the laboratory. However, knowledge gaps and discrepancies exist between laboratory studies and realistic environmental research; such inconsistencies hinder the development of health and safety regulations. To bridge these gaps, this review summarizes how environmental conditions and the physicochemical properties of Ag NPs affect the inconsistent findings between laboratory studies and realistic environmental research. Moreover, this paper systematically reviews different toxic effects of Ag NPs in a realistic environment and compares these effects with those in the laboratory, which is helpful for assessing the environmental fate and risk of Ag NPs. The hazardous effects of Ag NPs on the whole aquatic ecosystem with low concentrations (μg L−1) and long-term periods (months to years) are detailed. Furthermore, two perspectives of future toxicity studies of Ag NPs in realistic freshwater environments are emphasized.


Fate Toxicity Silver nanoparticles Environmental risk 



We acknowledge financial support from the Joint Funds of the National Natural Science Foundation of China (No. U1804109), the Scientific Research and Service Platform Fund of Henan Province (No. 2016151), the scientific and technological innovation team of water ecological security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province (No. 17454), the Foundation of Henan educational committee (No. 19A330003), and the Foundation of Nanyang Normal University (No. 18023). We greatly thank the anonymous reviewers for their helpful comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_4150_MOESM1_ESM.docx (55 kb)
ESM 1 (DOCX 55 kb)


  1. Abramenko NB, Demidova TB, Abkhalimov capital Ie C, Ershov BG, Krysanov EY, Kustov LM (2018) Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 347:89–94CrossRefGoogle Scholar
  2. Afshinnia K, Baalousha M (2017) Effect of phosphate buffer on aggregation kinetics of citrate-coated silver nanoparticles induced by monovalent and divalent electrolytes. Sci Total Environ 581-582:268–276CrossRefGoogle Scholar
  3. Aiken GR, Hsu-Kim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol 45:3196–3201CrossRefGoogle Scholar
  4. Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93:359–365CrossRefGoogle Scholar
  5. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:14CrossRefGoogle Scholar
  6. Axson JL, Stark DI, Bondy AL, Capracotta SS, Maynard AD, Philbert MA, Bergin IL, Ault AP (2015) Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C 119:20632–20641CrossRefGoogle Scholar
  7. Baalousha M, Nur Y, Römer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454-455:119–131CrossRefGoogle Scholar
  8. Baptista MS, Miller RJ, Halewood ER, Hanna SK, Almeida CMR, Vasconcelos VM, Keller AA, Lenihan HS (2015) Impacts of silver nanoparticles on a natural estuarine plankton community. Environ Sci Technol 49:12968–12974CrossRefGoogle Scholar
  9. Baun A, Sayre P, Steinhäuser KG, Rose J (2017) Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. NanoImpact 8:1–10CrossRefGoogle Scholar
  10. Blakelock GC, Xenopoulos MA, Norman BC, Vincent JL, Frost PC (2016) Effects of silver nanoparticles on bacterioplankton in a boreal lake. Freshw Biol 61:2211–2220CrossRefGoogle Scholar
  11. Burello E (2017) Review of (Q)SAR models for regulatory assessment of nanomaterials risks. NanoImpact 8:48–58CrossRefGoogle Scholar
  12. Button M, Auvinen H, Van Koetsem F, Hosseinkhani B, Rousseau D, Weber KP, Du Laing G (2016) Susceptibility of constructed wetland microbial communities to silver nanoparticles: a microcosm study. Ecol Eng 97:476–485CrossRefGoogle Scholar
  13. Chae Y, An Y-J (2016) Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquat Toxicol 173:94–104CrossRefGoogle Scholar
  14. Chen S, Goode AE, Sweeney S, Theodorou IG, Thorley AJ, Ruenraroengsak P, Chang Y, Gow A, Schwander S, Skepper J, Zhang J, Shaffer MS, Chung KF, Tetley TD, Ryan MP, Porter AE (2013) Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale 5:9839–9847CrossRefGoogle Scholar
  15. Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409:2443–2450CrossRefGoogle Scholar
  16. Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L Jr, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886CrossRefGoogle Scholar
  17. Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI, Brewer T, Davis J, Petersen EJ, Wood L (2012) Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Total Environ 421-422:267–272CrossRefGoogle Scholar
  18. Collin B, Tsyusko OV, Starnes DL, Unrine JM (2016) Effect of natural organic matter on dissolution and toxicity of sulfidized silver nanoparticles to Caenorhabditis elegans. Environ Sci Nano 3:728–736CrossRefGoogle Scholar
  19. Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8:e57189CrossRefGoogle Scholar
  20. Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, Wiesner MR, Bernhardt ES (2014) Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–5236CrossRefGoogle Scholar
  21. Conine AL, Rearick DC, Xenopoulos MA, Frost PC (2017) Variable silver nanoparticle toxicity to Daphnia in boreal lakes. Aquat Toxicol 192:1–6CrossRefGoogle Scholar
  22. Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL (2014) Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environ Toxicol Chem 33:2716–2723CrossRefGoogle Scholar
  23. Das P, Williams CJ, Fulthorpe RR, Hoque ME, Metcalfe CD, Xenopoulos MA (2012) Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ Sci Technol 46:9120–9128CrossRefGoogle Scholar
  24. Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–4146CrossRefGoogle Scholar
  25. Doolette CL, McLaughlin MJ, Kirby JK, Navarro DA (2015) Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake. J Hazard Mater 300:788–795CrossRefGoogle Scholar
  26. Ellis L-JA, Baalousha M, Valsami-Jones E, Lead JR (2018) Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. Chemosphere 191:616–625CrossRefGoogle Scholar
  27. Espinasse BP, Geitner NK, Schierz A, Therezien M, Richardson CJ, Lowry GV, Ferguson L, Wiesner MR (2018) Comparative persistence of engineered nanoparticles in a complex aquatic ecosystem. Environ Sci Technol 52:4072–4078CrossRefGoogle Scholar
  28. Furtado LM, Norman BC, Xenopoulos MA, Frost PC, Metcalfe CD, Hintelmann H (2015) Environmental fate of silver nanoparticles in boreal lake ecosystems. Environ Sci Technol 49:8441–8450CrossRefGoogle Scholar
  29. Furtado LM, Bundschuh M, Metcalfe CD (2016) Monitoring the fate and transformation of silver nanoparticles in natural waters. Bull Environ Contam Toxicol 97:449–455CrossRefGoogle Scholar
  30. Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monit 13:1227–1235CrossRefGoogle Scholar
  31. Gallego-Urrea JA, Hammes J, Cornelis G, Hassellöv M (2016) Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: influence of initial particle concentration. NanoImpact 3-4:67–74CrossRefGoogle Scholar
  32. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11Google Scholar
  33. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  34. Grun AY, App CB, Breidenbach A, Meier J, Metreveli G, Schaumann GE, Manz W (2018) Effects of low dose silver nanoparticle treatment on the structure and community composition of bacterial freshwater biofilms. PLoS One 13:e0199132CrossRefGoogle Scholar
  35. Guo X, Yin Y, Tan Z, Liu J (2018) Environmentally relevant freeze-thaw cycles enhance the redox-mediated morphological changes of silver nanoparticles. Environ Sci Technol 52:6928–6935CrossRefGoogle Scholar
  36. Hartmann NB, Ågerstrand M, Lützhøft H-CH, Baun A (2017) NanoCRED: a transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials–relevance and reliability revisited. NanoImpact 6:81–89CrossRefGoogle Scholar
  37. Helmlinger J, Sengstock C, Groß-Heitfeld C, Mayer C, Schildhauer TA, Köller M, Epple M (2016) Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv 6:18490–18501CrossRefGoogle Scholar
  38. Hu Y, Chen X, Yang K, Lin D (2018) Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water. Sci Total Environ 618:838–846CrossRefGoogle Scholar
  39. Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571CrossRefGoogle Scholar
  40. Jiang HS, Yin L, Ren NN, Xian L, Zhao S, Li W, Gontero B (2017) The effect of chronic silver nanoparticles on aquatic system in microcosms. Environ Pollut 223:395–402CrossRefGoogle Scholar
  41. Jimenez-Lamana J, Slaveykova VI (2016) Silver nanoparticle behaviour in lake water depends on their surface coating. Sci Total Environ 573:946–953CrossRefGoogle Scholar
  42. Jung Y, Metreveli G, Park C-B, Baik S, Schaumann GE (2018) Implications of Pony Lake fulvic acid for the aggregation and dissolution of oppositely charged surface-coated silver nanoparticles and their ecotoxicological effects on Daphnia magna. Environ Sci Technol 52:436–445CrossRefGoogle Scholar
  43. Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47:3866–3877CrossRefGoogle Scholar
  44. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRefGoogle Scholar
  45. Lau BLT, Hockaday WC, Ikuma K, Furman O, Decho AW (2013) A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloids Surf Physicochem Eng Asp 435:22–27CrossRefGoogle Scholar
  46. Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:5260–5266CrossRefGoogle Scholar
  47. Li X, Lenhart JJ, Walker HW (2010) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26:16690–16698CrossRefGoogle Scholar
  48. Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28:1095–1104CrossRefGoogle Scholar
  49. Li L, Hartmann G, Doblinger M, Schuster M (2013) Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 47:7317–7323CrossRefGoogle Scholar
  50. Li L, Wu H, Ji C, van Gestel CA, Allen HE, Peijnenburg WJ (2015) A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles. Ecotoxicol Environ Saf 119:66–73CrossRefGoogle Scholar
  51. Li L, Stoiber M, Wimmer A, Xu Z, Lindenblatt C, Helmreich B, Schuster M (2016a) To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ Sci Technol 50:6327–6333CrossRefGoogle Scholar
  52. Li L, Zhou Q, Geng F, Wang Y, Jiang G (2016b) Formation of nanosilver from silver sulfide nanoparticles in natural waters by photoinduced Fe(II, III) redox cycling. Environ Sci Technol 50:13342–13350CrossRefGoogle Scholar
  53. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRefGoogle Scholar
  54. Liu J, Pennell KG, Hurt RH (2011) Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 45:7345–7353CrossRefGoogle Scholar
  55. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46:7027–7036CrossRefGoogle Scholar
  56. Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE, Lowry GV (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759CrossRefGoogle Scholar
  57. Mackevica A, Skjolding LM, Gergs A, Palmqvist A, Baun A (2015) Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions. Aquat Toxicol 161:10–16CrossRefGoogle Scholar
  58. Manoharan V, Ravindran A, Anjali CH (2014) Mechanistic insights into interaction of humic acid with silver nanoparticles. Cell Biochem Biophys 68:127–131CrossRefGoogle Scholar
  59. Martin MN, Allen AJ, MacCuspie RI, Hackley VA (2014) Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir 30:11442–11452CrossRefGoogle Scholar
  60. Metreveli G, Frombold B, Seitz F, Grun A, Philippe A, Rosenfeldt RR, Bundschuh M, Schulz R, Manz W, Schaumann GE (2016) Impact of chemical composition of ecotoxicological test media on the stability and aggregation status of silver nanoparticles. Environ Sci Nano 3:418–433CrossRefGoogle Scholar
  61. Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150CrossRefGoogle Scholar
  62. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453CrossRefGoogle Scholar
  63. Musee N (2011) Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30:1181–1195CrossRefGoogle Scholar
  64. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964CrossRefGoogle Scholar
  65. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59CrossRefGoogle Scholar
  66. Odzak N, Kistler D, Sigg L (2017) Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ Pollut 226:1–11CrossRefGoogle Scholar
  67. Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85CrossRefGoogle Scholar
  68. Park HG, Kim JI, Chang KH, Lee BC, Eom IC, Kim P, Nam DH, Yeo MK (2018) Trophic transfer of citrate, PVP coated silver nanomaterials, and silver ions in a paddy microcosm. Environ Pollut 235:435–445CrossRefGoogle Scholar
  69. Peijnenburg WJGM, Baalousha M, Chen J, Chaudry Q, Von der kammer F, Kuhlbusch TAJ, Lead J, Nickel C, Quik JTK, Renker M, Wang Z, Koelmans AA (2015) A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol 45:2084–2134CrossRefGoogle Scholar
  70. Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–11961CrossRefGoogle Scholar
  71. Peters RJB, van Bemmel G, Milani NBL, den Hertog GCT, Undas AK, van der Lee M, Bouwmeester H (2018) Detection of nanoparticles in Dutch surface waters. Sci Total Environ 621:210–218CrossRefGoogle Scholar
  72. Pokhrel LR, Dubey B, Scheuerman PR (2013) Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles. Environ Sci Technol 47:12877–12885CrossRefGoogle Scholar
  73. Rajala JE, Maenpaa K, Vehniainen ER, Vaisanen A, Scott-Fordsmand JJ, Akkanen J, Kukkonen JV (2016) Toxicity testing of silver nanoparticles in artificial and natural sediments using the benthic organism Lumbriculus variegatus. Arch Environ Contam Toxicol 71:405–414CrossRefGoogle Scholar
  74. Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellov M, Taylor C, Soares AM, Loureiro S (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466–467:232–241CrossRefGoogle Scholar
  75. Ribeiro F, Van Gestel CAM, Pavlaki MD, Azevedo S, Soares A, Loureiro S (2017) Bioaccumulation of silver in Daphnia magna: waterborne and dietary exposure to nanoparticles and dissolved silver. Sci Total Environ 574:1633–1639CrossRefGoogle Scholar
  76. Robertson AI, Bunn SE, Boon PI, Walker KF (1999) Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Mar Freshw Res 50:813–829CrossRefGoogle Scholar
  77. Römer I, Wang ZW, Merrifield RC, Palmer RE, Lead J (2016) High resolution STEM-EELS study of silver nanoparticles exposed to light and humic substances. Environ Sci Technol 50:2183–2190CrossRefGoogle Scholar
  78. Sakka Y, Skjolding LM, Mackevica A, Filser J, Baun A (2016) Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquat Toxicol 177:526–535CrossRefGoogle Scholar
  79. Sandra FG, M DP, Lopes R, Hammes J, Gallego-Urrea JA, Hassellov M, Jurkschat K, Crossley A, Loureiro S (2017) Effects of silver nanoparticles on the freshwater snail Physa acuta: the role of test media and snails' life cycle stage. Environ Toxicol Chem 36:243–253CrossRefGoogle Scholar
  80. Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, Nowinski DT, Luong P, Tran C, Karunaratne N, Pham D, Lin XX, Falciani F, Higgins CP, Ranville JF, Vulpe CD, Gilbert B (2013) Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7:10681–10694CrossRefGoogle Scholar
  81. Seitz F, Rosenfeldt RR, Storm K, Metreveli G, Schaumann GE, Schulz R, Bundschuh M (2015) Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna. Ecotoxicol Environ Saf 111:263–270CrossRefGoogle Scholar
  82. Sendra M, Yeste MP, Gatica JM, Moreno-Garrido I, Blasco J (2017) Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere 179:279–289CrossRefGoogle Scholar
  83. Shen MH, Zhou XX, Yang XY, Chao JB, Liu R, Liu JF (2015) Exposure medium: key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Sci Rep 5:9674CrossRefGoogle Scholar
  84. Shi J, Xu B, Sun X, Ma C, Yu C, Zhang H (2013) Light induced toxicity reduction of silver nanoparticles to Tetrahymena pyriformis: effect of particle size. Aquat Toxicol 132-133:53–60CrossRefGoogle Scholar
  85. Sohn EK, Johari SA, Kim TG, Kim JK, Kim E, Lee JH, Chung YS, Yu IJ (2015) Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int 2015:12Google Scholar
  86. Sorensen SN, Holten Lutzhoft HC, Rasmussen R, Baun A (2016) Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles. Aquat Toxicol 180:209–217CrossRefGoogle Scholar
  87. Starnes DL, Unrine JM, Starnes CP, Collin BE, Oostveen EK, Ma R, Lowry GV, Bertsch PM, Tsyusko OV (2015) Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environ Pollut 196:239–246CrossRefGoogle Scholar
  88. Stegemeier JP, Schwab F, Colman BP, Webb SM, Newville M, Lanzirotti A, Winkler C, Wiesner MR, Lowry GV (2015) Speciation matters: bioavailability of silver and silver sulfide nanoparticles to alfalfa (Medicago sativa). Environ Sci Technol 49:8451–8460CrossRefGoogle Scholar
  89. Taylor C, Matzke M, Kroll A, Read DS, Svendsen C, Crossley A (2016) Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environ Sci Nano 3:396–408CrossRefGoogle Scholar
  90. Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R (2014) Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol 48:4885–4892CrossRefGoogle Scholar
  91. Thalmann B, Voegelin A, Morgenroth E, Kaegi R (2016) Effect of humic acid on the kinetics of silver nanoparticle sulfidation. Environ Sci Nano 3:203–212CrossRefGoogle Scholar
  92. Vincent JL, Paterson MJ, Norman BC, Gray EP, Ranville JF, Scott AB, Frost PC, Xenopoulos MA (2017) Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. Ecotoxicology 26:502–515CrossRefGoogle Scholar
  93. Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275CrossRefGoogle Scholar
  94. Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127CrossRefGoogle Scholar
  95. Yin Y, Tan Z, Hu L, Yu S, Liu J, Jiang G (2017) Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications. Chem Rev 117:4462–4487CrossRefGoogle Scholar
  96. Yuan L, Richardson CJ, Ho M, Willis CW, Colman BP, Wiesner MR (2018) Stress responses of aquatic plants to silver nanoparticles. Environ Sci Technol 52:2558–2565CrossRefGoogle Scholar
  97. Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K (2015) Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 9:54–63CrossRefGoogle Scholar
  98. Zhang W, Yao Y, Li K, Huang Y, Chen Y (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159:3757–3762CrossRefGoogle Scholar
  99. Zhang W, Liu X, Bao S, Xiao B, Fang T (2016) Evaluation of nano-specific toxicity of zinc oxide, copper oxide, and silver nanoparticles through toxic ratio. J Nanopart Res 18:372CrossRefGoogle Scholar
  100. Zhang T, Lu D, Zeng L, Yin Y, He Y, Liu Q, Jiang G (2017) Role of secondary particle formation in the persistence of silver nanoparticles in humic acid containing water under light irradiation. Environ Sci Technol 51:14164–14172CrossRefGoogle Scholar
  101. Zhang W, Xiao B, Fang T (2018) Chemical transformation of silver nanoparticles in aquatic environments: mechanism, morphology and toxicity. Chemosphere 191:324–334CrossRefGoogle Scholar
  102. Zhang W, Huang J, Liang L, Yao L, Fang T (2019) Dual impact of dissolved organic matter on cytotoxicity of PVP-Ag NPs to Escherichia coli: mitigation and intensification. Chemosphere 214:754–763CrossRefGoogle Scholar
  103. Zhao C-M, Wang W-X (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892CrossRefGoogle Scholar
  104. Zhou W, Liu Y-L, Stallworth AM, Ye C, Lenhart JJ (2016) Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles. Environ Sci Technol 50:12214–12224CrossRefGoogle Scholar
  105. Zou X, Shi J, Zhang H (2015) Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation. J Hazard Mater 292:61–69CrossRefGoogle Scholar
  106. Zou X, Li P, Lou J, Fu X, Zhang H (2017) Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: effects of dissolved oxygen. Environ Pollut 230:674–682CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan ProvinceNanyang Normal UniversityNanyangChina
  2. 2.Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion ProjectNanyang Normal UniversityNanyangChina

Personalised recommendations