Advertisement

Spatial econometric analysis of carbon emission intensity in Chinese provinces from the perspective of innovation-driven

  • Song LiangEmail author
  • Jingfeng Zhao
  • Shumin He
  • Qingqing Xu
  • Xin Ma
Sustainable Environmental Management
  • 91 Downloads

Abstract

This study estimates the carbon emission intensity of China’s provinces during the period from 2000 to 2015. First, the temporal and spatial pattern evolution of China’s carbon emission intensity was analyzed using spatial statistics. Then, from an innovation-driven perspective, combining the data of innovative technologies and scale factors to construct a spatial panel model to explore the main influencing factors of carbon emission intensity and its spatial spillover effect. The results show that: China’s provincial carbon emission intensity has obvious spatial agglomeration characteristics, and regional differences are improving, and the spatial spillover effect of some influencing factors is obvious; innovation indicators such as the number of patent authorizations, technical market turnover, and foreign direct investment, and GDP have a significant negative impact on carbon intensity, and the effects of general scale variables such as urbanization rate, energy consumption, and population density on carbon intensity are significantly positive.

Keywords

Innovation-driven Carbon emission intensity Spatial econometrics Spatial spillover effect 

Notes

Funding information

The authors thank the support of the National Social Science Fund of China; the project number is 16BJL076 (Research on the impact of carbon trading on China’s regional economic development from the perspective of spatial and temporal differentiation).

References

  1. Andersson FNG, Karpestam P (2013) CO2, emissions and economic activity: short- and long-run economic determinants of scale, energy intensity and carbon intensity. Energy Policy 61(8):1285–1294.  https://doi.org/10.1016/j.enpol.2013.06.004 CrossRefGoogle Scholar
  2. Anselin L (2001) Rao’s score test in spatial econometrics. J Statist Plann Inference 97(1):113–139.  https://doi.org/10.1016/S0378-3758(00)00349-9 CrossRefGoogle Scholar
  3. Cheng Y, Wang Z, Shouzhi Z et al (2013) Spatial measurement of carbon emission intensity of energy consumption in China and its influencing factors. Acta Geograph Sin 68(10):1418–1431.  https://doi.org/10.11821/dlxb201310011 Google Scholar
  4. Cheng Y, Wang Z, Ye X, Wei YD (2014) Spatiotemporal dynamics of carbon intensity from energy consumption in China. J Geogr Sci 24(4):631–650.  https://doi.org/10.1007/s11442-014-1110-6 CrossRefGoogle Scholar
  5. Conley TG, Ligon E (2002) Economic distance and cross-country spillovers. J Econ Growth 7(2):157–187.  https://doi.org/10.1023/A:101567611 CrossRefGoogle Scholar
  6. Deng J, Liu X, Wang Z (2014) Analysis and disintegration of regional disparities and evolution characteristics of carbon emissions in China. J Nat Resour (2):189–200.  https://doi.org/10.11849/zrzyxb.2014.02.001
  7. Doudou B, Fang Y, Xie M, Tang Y, Lin Z (2015) Temporal and spatial evolution of China’s provincial service industry innovation level and its dynamic mechanism: An empirical study based on spatial econometric model. Econ Geogr 2015 35(10):139–148.  https://doi.org/10.15957/j.cnki.jjdl.2015.10.020 Google Scholar
  8. Fu Y, Ma S, Song Q (2015) Spatial econometric analysis of regional carbon emission intensity in China. Statist Res 32(6):67–73.  https://doi.org/10.3969/j.issn.1002-4565.2015.06.009 Google Scholar
  9. Hu Y, Guichun L, Kong X et al (2016) Analysis of spatial and temporal differences in China’s carbon emission intensity. Resour Ind 18(2):67–75.  https://doi.org/10.3969/j.issn.1002-4565.2015.06.009 Google Scholar
  10. Li L, Hong X (2017) Spatial effects of energy carbon emission and environmental pollution: a spatial Dubin measure model based on energy intensity and technological progress. Ind Technol Econ 36(9):65–72.  https://doi.org/10.3969/j.issn.1004-910X.2017.09.009 Google Scholar
  11. Liu F, Sun Y (2008) Empirical analysis of the effect of technological innovation and industrial structure adjustment on energy consumption. China Polity, Resour Environ 18(3):108–113.  https://doi.org/10.3969/j.issn.1002-2104.03.020 Google Scholar
  12. Liu X, Gao C, Zhang Y et al (2016) Spatial regression analysis of spatial dependence and influencing factors of China’s provincial energy consumption carbon emissions. J Arid Land Resour Environ 30(10):1–6.  https://doi.org/10.13448/j.cnki.jalre.2016.308 Google Scholar
  13. Ma X, Rubing GE, Zhang L (2014) Research on the relationship between air quality and economy development in majorcities of China. Kybernetes 43(8):1224–1236.  https://doi.org/10.1108/K-07-2013-0146 CrossRefGoogle Scholar
  14. Ma D, Chen Z, Wang L (2015) Spatial measurement of China’s provincial carbon emission efficiency. China Polity Resour Environ 25(1):67–77.  https://doi.org/10.3969/j.issn.1002-2104.2015.01.010 Google Scholar
  15. Ma Y, Lu Y, Yutao S (2016) Technological advancement, structural adjustment, and carbon emission intensity: an empirical study based on the spatial panel data model at the provincial level in China. Res Dev Manag 05:23–33.  https://doi.org/10.3969/j.issn.1004-8308.2016.05.003 Google Scholar
  16. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Cleemput O (1999) An overview of the revised 1996 IPCC guidelines for national greenhouse gas inventory methodology for nitrous oxide from agriculture. Environ Sci Pol 2(3):325–333.  https://doi.org/10.1016/S1462-9011(99)00022-2 CrossRefGoogle Scholar
  17. Peizhen J, Zhang Y, Peng X (2014) Double-edged effect of technological progress in reducing emissions of carbon dioxide-evidence-based Chinese industry 35 industries. Sci Res, 2014 32(05):706–716.  https://doi.org/10.16192/j.cnki.1003-2053.2014.05.006 Google Scholar
  18. Qin D (2014) Climate change science and human sustainable development. Prog Geogr 33(07):874–883.  https://doi.org/10.11820/dlkxjz.2014.07.002 Google Scholar
  19. Qin J, Tang H (2015) Research on the mechanism of technological innovation promoting the development of low-carbon economy. Ecol Econ 09:39–42.  https://doi.org/10.3969/j.issn.1671-4407.2015.09.009 Google Scholar
  20. Guest R (2011) Global demographic change, carbon emissions, the optimal carbon price and carbon abatement. Glob Econ J 10(2).  https://doi.org/10.2202/1524-5861.1466
  21. Sadorsky P (2014) The effect of urbanization on CO2, emissions in emerging economies. Energy Econ 41(1):147–153.  https://doi.org/10.1016/j.eneco.2013.11.007 CrossRefGoogle Scholar
  22. Wang X, Zhang Y, Qin Y et al (2016) Spatial-temporal differentiation and regulation of China’s carbon emission influencing factors. Econ Geogr 36(8):158–165.  https://doi.org/10.15957/j.cnki.jjdl.2016.08.023 Google Scholar
  23. Xie S, Wang L, Shao Z (2013) Analysis of industry differences and causes of China’s carbon emission intensity. Environ Sci Res 2013(11):1001–6929.  https://doi.org/10.13198/j.issn.1001-6929.2013.11.015 Google Scholar
  24. Xin S, Kemeng Z (2014) An empirical analysis of influencing factors of carbon emission in China. Statist Res 31(02):61–67.  https://doi.org/10.19343/j.cnki.11-1302/c.2014.02.009 Google Scholar
  25. Xin Sun, Yongchang, Shen, Ran Tao (2016). The measurement of low carbon technology progress in china and its effect on carbon emission intensity. Jianghuai Forum, (06):64–71.  https://doi.org/10.19343/j.cnki.11-1302/c.2014.02.009
  26. Xuezhi L, Xu C, Zhang M (2013) China’s energy consumption intensity, structure and technology innovation and carbon emissions: empirical analysis based on panel data model. Fri Acc 2013(09):53–57.  https://doi.org/10.3969/j.issn.1004-5937.2013.09.013 Google Scholar
  27. Yang G, Wu Q (2016) Empirical test of the spatial spillover effects of provincial carbon emissions in China. Statist Decision 21:87–90.  https://doi.org/10.13546/j.cnki.tjyjc.2016.21.023 Google Scholar
  28. Yanmei Y, Wang Z, Wu L, Liu C (2016) An analysis of the effect of China’s carbon emission intensity factors on regional disparities. J Environ Sci, 2016 36(09):3436–3444.  https://doi.org/10.13671/j.hjkxxb.2016.0102 Google Scholar
  29. Zhang C, Zhang Z (2015) Spatial effects of energy endowments and technological progress on China’s carbon emission intensity. China Polity Resour Environ 25(9):37–43.  https://doi.org/10.3969/j.issn.1002-2104.2015.09.006 Google Scholar
  30. Zhou X, Zhang J, Li J (2013) Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 57(3):43–51.  https://doi.org/10.1016/j.enpol.2012.07.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Song Liang
    • 1
    Email author
  • Jingfeng Zhao
    • 1
  • Shumin He
    • 1
  • Qingqing Xu
    • 1
  • Xin Ma
    • 1
  1. 1.North China University of Water Resources and Electric PowerZhengzhouChina

Personalised recommendations