Advertisement

The effect of redox capacity of humic acids on hexachlorobenzene dechlorination during the anaerobic digestion process

  • Dongyang Li
  • Beidou Xi
  • Yingjun Li
  • Xiaowei Wang
  • Tianxue Yang
  • Hong Yu
  • Caihong Huang
  • Jianchao Zhu
  • Qi Li
  • Xing Peng
  • Zhifei Ma
Research Article

Abstract

Hexachlorobenzene (HCB) dechlorination affected by humic acids (HA) was evaluated in terms of HA redox capacity, HA concentrations, and microbial community, as well as the correlation between HA redox capacity values and HCB concentrations. With addition of HA in the initial stage, redox capacity values increased by 2.19 meq/L (80 mg/L of HA addition, HA80), 2.51 meq/L (120 mg/L of HA addition, HA120), and 3.64 meq/L (200 mg/L of HA addition, HA200), respectively. The addition of HA could prominently enhance the HCB degradation rate. However, the concentration and the redox capacity of HA decreased during the anaerobic digestion process. Illumina MiSeq sequencing showed that microbial community affected by HA. Bacillus, Comamonas, and Pseudomonas were the predominant genera during the HCB dechlorination treatment. Moreover, Bacillus and Pseudomonas can improve HA electron transfer capability and promote the dechlorination of HCB.

Keywords

Hexachlorobenzene Dechlorination Humic acids Redox capacity Microbial community 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (No. 51608499).

References

  1. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7(1344):1–10Google Scholar
  2. Azman S, Khadem AF, Plugge CM, Stams AJM, Bec S, Zeeman G (2017) Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl Microbiol Biotechnol 101:889–901CrossRefGoogle Scholar
  3. Bauer M, Heitmann T, Macalady DL, Blodau C (2007) Electron transfer capacities and reaction kinetics of peat dissolved organic matter. Environ Sci Technol 41:139–145CrossRefGoogle Scholar
  4. Brahushi F, Dörfler U, Schroll R, Munch JC (2004) Stimulation of reductive dechlorination of hexachlorobenzene in soil by inducing the native microbial activity. Chemosphere 55:1477–1484CrossRefGoogle Scholar
  5. Brahushi F, Kengara FO, Yang S, Xin J, Munch JC, Fang W (2017) Fate processes of chlorobenzenes in soil and potential remediation strategies: a review. Pedosphere 27(3):407–420CrossRefGoogle Scholar
  6. Cervantes FJ, Martínez CM, Gonzalez-Estrella J, Márquez A, Arriaga S (2013) Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids. Appl Microbiol Biotechnol 97(6):2671–2679CrossRefGoogle Scholar
  7. Chai XL, Liu GX, Zhao X, Hao YX, Zhao YC (2012) Fluorescence excitation–emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages. Waste Manag 32(3):438–447CrossRefGoogle Scholar
  8. Chen IM, Chang YF, Lin H (2004) Microbial Dechlorination of hexachlorobenzene by untamed sediment microorganisms in Taiwan. Practice periodical of hazardous, toxic, and radioactive. Waste Manag 8(2):73–78Google Scholar
  9. Chrysikou L, Gemenetzis P, Kouras A, Manoli E, Terzi E, Samara C (2008) Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece. Environ Int 34(2):210–225CrossRefGoogle Scholar
  10. Demirtepe H, Kjellerup B, Sowers KR, Imamoglu I (2015) Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model. J Hazard Mater 296:120–127CrossRefGoogle Scholar
  11. Gong WW, Fiedler H, Liu XT, Wang B, Yu G (2017) Emission factors of unintentional HCB and PeCBz and their correlation with PCDD/PCDF. Environ Pollut 230:516–522CrossRefGoogle Scholar
  12. Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42(10):3563–3569CrossRefGoogle Scholar
  13. Kappler A, Benz M, Schink B, Brune A (2004) Electron shuttling via humic acids in microbial iron (III) reduction in a freshwater sediment[J]. FEMS Microbiol Ecol 47(1):85–92CrossRefGoogle Scholar
  14. Li DY, Yang TX, Wu MH, Xi BD, Wu JQ, Li GW, Li CL (2016) Anaerobic degradation regulation of hexachlorobenzene and degradation products enhanced by humic acid [J]. Res Environ Sci 29(6):870–876 (In Chinese)Google Scholar
  15. Mahmood S, Khalid A, Arshad M, Ahmad R (2015) Effect of trace metals and electron shuttle on simultaneous reduction of reactive black-5 azo dye and hexavalent chromium in liquid medium by Pseudomonas sp. Chemosphere 138:895–900CrossRefGoogle Scholar
  16. Matturro B, Ubaldi C, Grenni P, Caracciolo AB, Rossetti S (2016) Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities. Environ Sci Pollut Res 23(13):12613–12623CrossRefGoogle Scholar
  17. Nevin KP, Lovley DR (2000) Potential for nonenzymatic reduction of Fe (III) via electron shuttling in subsurface sediments. Environ Sci Technol 34(12):2472–2478CrossRefGoogle Scholar
  18. Park HJ, Kim D (2015) Isolation and characterization of humic substances-degrading bacteria from the subarctic Alaska grasslands. J Basic Microbiol 55(1):54–61CrossRefGoogle Scholar
  19. Paul CC, Stone JJ (2009) Effects of nickel and soil humic acid during biological hematite reduction by Shewanella putrefaciens CN32. Environ Eng Sci 26(4):841–848CrossRefGoogle Scholar
  20. Schiffmann CL, Jehmlich N, Otto W, Hansen R, Nielsen PH, Adrian L, von Bergen M (2014) Proteome profile and proteogenomics of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor. J Proteomice 98:59–64CrossRefGoogle Scholar
  21. Song Y, Bian YR, Wang F, Herzberger A, Yang XL, Gu CG, Jiang X (2017) Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil. Chemosphere 186:116–123CrossRefGoogle Scholar
  22. Takagi K, Iwasaki A, Kamei I, Satsuma K, Yoshioka Y, Harada N (2009) Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Appl Environ Microbiol 75(13):4452–4458CrossRefGoogle Scholar
  23. Uhlik O, Strejcek M, Vondracek J, Musilova L, Ridl J, Lovecka P, Macek T (2014) Bacterial acquisition of hexachlorobenzene-derived carbon in contaminated soil. Chemosphere 113:141–145CrossRefGoogle Scholar
  24. Van Larebeke N, Sioen I, Den Hond E, Nelen V, Van de Mieroop E, Nawrot T, Baeyens W (2015) Internal exposure to organochlorine pollutants and cadmium and self-reported health status: a prospective study. Int J Hyg Environ Health 218(2):232–245CrossRefGoogle Scholar
  25. Weber R, Watson A, Forter M, Oliaei F (2011) Persistent organic pollutants and landfills—a review of past experiences and future challenges. Waste Manag Res 29(1):107–121CrossRefGoogle Scholar
  26. Wu QL, Guo WQ, Zheng HS, Luo HC, Feng XC, Yin RL, Ren NQ (2016) Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: the mechanism and microbial community analyses. Bioresour Technol 216:653–660CrossRefGoogle Scholar
  27. Xiang Y, Cheng M, Huang YM, An SS, Darboux F (2017) Changes in soil microbial community and its effect on carbon sequestration following afforestation on the Loess Plateau, China. Int J Environ Res Public Health 14(8):948CrossRefGoogle Scholar
  28. Yu H, Feng CH, Liu XP, Yi XY, Ren Y, Wei CH (2016) Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation. Environ Pollut 211:81–89CrossRefGoogle Scholar
  29. Yuan Y, Tan WB, He XS, Xi BD, Gao RT, Zhang H, Dang QL, Li D (2016) Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components. Anal Bioanal Chem 408(27):7825–7833CrossRefGoogle Scholar
  30. Yun SH, Kannan K (2011) Distribution of mono-through hexa-chlorobenzenes in floodplain soils and sediments of the Tittabawassee and Saginaw Rivers, Michigan. Environ Sci Pollut Res 18(6):897–907CrossRefGoogle Scholar
  31. Zhang CF, Katayama A (2012) Humin as an electron mediator for microbial reductive dehalogenation. Environ Sci Technol 46(12):6575–6583CrossRefGoogle Scholar
  32. Zhao XY, He XS, Xi BD, Gao RT, Tan WB, Zhang H, Huang CH, Li D, Li M (2017) Response of humic-reducing microorganisms to the redox properties of humic substance during composting. Waste Manag 70:37–44CrossRefGoogle Scholar
  33. Zhou SG, Chen SS, Yuan Y, Lu Q (2015a) Influence of humic acid complexation with metal ions on extracellular electron transfer activity. Sci Rep 5:17067CrossRefGoogle Scholar
  34. Zhou X, Zhang CF, Zhang DD, Awata T, Xiao ZX, Yang Q, Katayama A (2015b) Polyphasic characterization of an anaerobic hexachlorobenzene-dechlorinating microbial consortium with a wide dechlorination spectrum for chlorobenzenes. J Biosci Bioeng 120(1):62–68CrossRefGoogle Scholar
  35. Zhu YP, Gao NY, Chu WH, Wang SF, Xu JH (2016) Bacterial reduction of highly concentrated perchlorate: kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere 148:188–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dongyang Li
    • 1
  • Beidou Xi
    • 1
  • Yingjun Li
    • 2
  • Xiaowei Wang
    • 3
  • Tianxue Yang
    • 1
  • Hong Yu
    • 1
  • Caihong Huang
    • 1
  • Jianchao Zhu
    • 1
  • Qi Li
    • 1
  • Xing Peng
    • 1
  • Zhifei Ma
    • 1
  1. 1.State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingPeople’s Republic of China
  2. 2.Beijing Vocational AgricultureBeijingPeople’s Republic of China
  3. 3.Energy Saving & Environmental Protection & Occupational Safety and Health ResearchChina Academy of Railway SciencesBeijingPeople’s Republic of China

Personalised recommendations