Advertisement

Ex situ catalytic biomass pyrolysis using mesoporous Ti-MCM-41

  • Maria do Socorro B. FontesEmail author
  • Dulce M. A. Melo
  • Lúcio A. O. Fontes
  • Renata M. Braga
  • Cíntia C. Costa
  • Antonio E. Martinelli
Research Article
  • 52 Downloads

Abstract

Biomass has attracted considerable attention as energy, economic, and environmental asset, as result of its abundance and range of properties. The use of mesoporous catalysts during fast pyrolysis has been a highly important route to improve efficiency as well adding value to biomass. The addition of titanium to molecular sieves increases the efficiency of the pyrolysis reaction by improving production and selectivity of products of interest. This study aims at analyzing the catalytic pyrolysis products of elephant grass using titanium catalysts prepared at different Si/Ti molar ratios, i.e., 25 and 50. The material was supported on MCM-41 for the catalytic pyrolysis of biomass. The biomass pyrolysis reactions were performed in a micropyrolyzer coupled to a GC/MS analyzer. The Ti-MCM-41 samples were characterized by XRD, BET-specific area, and UV-visible. The distribution of pyrolysis products depended on process parameters such as temperature and catalyst type. The highest yield for hydrocarbon production, such as styrene, benzene, methylbenzene, and naphthalene, was observed at 600 °C using Si/Ti equal to 50.

Keywords

Biomass Ti-MCM-41 Catalytic pyrolysis Elephant grass Mesoporous materials Biofuels 

Notes

Acknowledgements

The authors gratefully acknowledge UFRN Materials Science and Engineering Post-graduate Program (PPGCEM) and LabTam/NUPPRAR/UFRN for the use of their facilities.

Funding information

Tais study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

References

  1. Adam J, Antonakou E, Lappas A, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Øye G (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous Mesoporous Mater 96:93–101CrossRefGoogle Scholar
  2. ASTM Standard 1755-01 (2007) Standard test method for ash in biomass. American Society for Testing and Materials (ASTM), PhiladelphiaGoogle Scholar
  3. ASTM Standard E 711-87 (2004) Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. American Society for Testing and Materials (ASTM), PhiladelphiaGoogle Scholar
  4. ASTM Standard E 871-82 (2006) Standard test method for moisture analysis of particulate wood fuels. American Society for Testing and Materials (ASTM), PhiladelphiaGoogle Scholar
  5. ASTM Standard E 873-82 (2006) Standard test method for bulk density of densified particulate biomass fuels. American Society for Testing and Materials (ASTM), PhiladelphiaGoogle Scholar
  6. Barrett EP, Joiyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I Computations from Nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  7. Beltrán DÁ, Maubert Franco AM, Lomas L, Lara Corona VH, Cárdenas J, Negrón G (2003) Preparación de materiales mesoporosos tipo Ti-MCM-41 y su uso en la apertura nucleófilica de epiclorhidrina con L-prolinol. J Mex Chem Soc 47(2)Google Scholar
  8. Bhaumik A, Tatsumi T (2000) Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions. J Catal 189(1):31–39CrossRefGoogle Scholar
  9. Blasco T, Corma A, Navarro MT, Pariente, JP (1995) Syntesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156:65–74Google Scholar
  10. Braga RM, Costa TR, Freitas JCO, Barros JMF, Melo DMA, Melo MAF (2014) Pyrolysis kinetics of elephant grass pretreated biomasses. J Therm Anal Calorim 117:1341–1348CrossRefGoogle Scholar
  11. Braga RM, Melo DMA, Sobrinho EV, Barros JMF, Melo MAF, Carvalho AFM, Fontes MSB, Freitas JCO (2017) Catalytic upgrading of elephant grass (Pennisetum purpureum Schum) pyrolysis vapor using WO3 supported on RHA and RHA-MCM-41. Catal Today 279:224–232CrossRefGoogle Scholar
  12. Bridgwater AV (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29:285–295CrossRefGoogle Scholar
  13. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:71–73CrossRefGoogle Scholar
  14. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–315CrossRefGoogle Scholar
  15. Demirbas A (2009) Biorefineries: current activities and future development energy conversion and managements. Energy Convers Manag 50:2782–2801CrossRefGoogle Scholar
  16. Eimer GA, Casuscelli SG, Chanquia CM, Elías V, Crivello ME, Herrero ER (2008a) The influence of Ti-loading on the acid behavior and on the catalytic efficiency of mesoporous Ti-MCM-41 molecular sieves. Catal Today 133–135:639–646CrossRefGoogle Scholar
  17. Eimer GA, Chanquia CM, Sapag K, Herrero ER (2008b) The role of different parameters of synthesis in the final structure of Ti-containing mesoporous materials. Microporous Mesoporous Mater 116:670–676CrossRefGoogle Scholar
  18. Fontes MSB, Melo DMA, Barros JMF, Braga RM, Rodrigues G (2014) Kinetic study of the catalytic pyrolysis of elephant grass using Ti-MCM-41. Mater Res 17:216–221CrossRefGoogle Scholar
  19. Galacho C, Ribeiro Carrott MM, Carrott P (2007) Structural and catalytic properties of Ti–MCM-41 synthesised at room temperature up to high Ti content. Microporous Mesoporous Mater 100:312–321CrossRefGoogle Scholar
  20. Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos LA, Lappas AA, Triantafyllidis KS (2007) Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chem Eng J 134:51–57CrossRefGoogle Scholar
  21. Lu Q et al (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. J Anal Appl Pyrolysis 92:430–438CrossRefGoogle Scholar
  22. Oladeji JT, Itabiyi EA, Okekunle PO (2015) A comprehensive review of biomass pyrolysis as a process of renewable energy generation. J Nat Sci Res 5(5):99–105Google Scholar
  23. Quesada DM, Boddey RM, Reis VM, Urquiaga S (2004) Parâmetros Qualitativos de Genótipos de Capim elefante (PennisetumpurpureumSchum.) estudados para a produção de energia através da Biomassa. Circular T. Embrapa, Seopédica 4Google Scholar
  24. Samolada MC, Papafotica A, Vasalos IA (2000) Catalyst evaluation for catalytic biomass pyrolysis. Energy Fuel 14:1161–1167CrossRefGoogle Scholar
  25. Santos MMP, Daher RF, Ponciano NJ, Gravina GA, Pereira AV, Sant’ana JAA, Santos CL (2014) Características produtivas de capim- sob doses de fósforo e nitrogênio para fins energéticos. Científica 42(4):354–365CrossRefGoogle Scholar
  26. Silva E, Rocha CR (2010) Eucalipto e capim elefante: características e potencial produtivo de biomassa. Rev Agrogeoambiental, Inconfidentes 2:143–152Google Scholar
  27. Silva MC, Sousa AR, Freitas EV, Lira MA, Santos DC, Pereira VLA, Filho FT (2015) Efeito de níveis de resíduos sólidos sobre o comportamento do capim elefante cv. Mineirão na Zona da Mata pernambucana. X Congresso Nordestino de Produção Animal (CNPA). Anais Teresina, Piauí: 1–3Google Scholar
  28. Stefanidis SD, Kalogiannis KG, Iliopouloua EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150Google Scholar
  29. Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (PennisetumPurpureumSchum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99:8394–8399CrossRefGoogle Scholar
  30. Tuel A (1999) Modification of mesoporous silicas by incorporation of heteroelements in the framework. Microporous Mesoporous Mater 27:151–169CrossRefGoogle Scholar
  31. Wang D, Li D, Liu Y (2014) Reduction of the variety of phenolic compounds in bio-oil via the catalytic pyrolysis of pine sawdust. BioResources 9(3):4014–4021Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maria do Socorro B. Fontes
    • 1
    Email author
  • Dulce M. A. Melo
    • 2
  • Lúcio A. O. Fontes
    • 3
  • Renata M. Braga
    • 4
  • Cíntia C. Costa
    • 5
  • Antonio E. Martinelli
    • 1
  1. 1.Programa de Pós-Graduação em Ciência e Engenharia de MateriaisUniversidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Instituto de QuímicaUniversidade Federal do Rio Grande do NorteNatalBrazil
  3. 3.Departamento de Engenharia mecânicaUniversidade Federal do Rio Grande do Norteco-pyrolysis of celluloseNatalBrazil
  4. 4.Universidade Federal do Rio Grande do NorteMacaíbaBrazil
  5. 5.Programa de Pós-Graduação em Ciência e Engenharia de PetróleoUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations