Advertisement

Plot-scale spatiotemporal variations of CO2 concentration and flux across water–air interfaces at aquaculture shrimp ponds in a subtropical estuary

  • Yifei Zhang
  • Ping YangEmail author
  • Hong Yang
  • Lishan Tan
  • Qianqian Guo
  • Guanghui Zhao
  • Ling Li
  • Yuchuan Gao
  • Chuan TongEmail author
Research Article
  • 81 Downloads

Abstract

Human activities have increased anthropogenic CO2 emissions, which are believed to play important roles in global warming. The spatiotemporal variations of CO2 concentration and flux at fine spatial scales in aquaculture ponds remain unclear, particularly in China, the country with the largest aquaculture. In this study, the plot-scale spatiotemporal variations of water CO2 concentration and flux, both within and among ponds, were researched in shrimp ponds in Shanyutan Wetland, Min River Estuary, Southeast China. The average water CO2 concentration and flux across the water–air interface in the shrimp ponds over the shrimp farming period varied from 22.79 ± 0.54 to 186.66 ± 8.71 μmol L−1 and from − 0.50 ± 0.04 to 2.87 ± 0.78 mol m−2 day−1, respectively. There was no remarkable difference in CO2 concentration and flux within the ponds, but significantly spatiotemporal differences in CO2 flux were observed between shrimp ponds. Chlorophyll a, pH, salinity, air temperature, and morphometry were the important factors driving the spatiotemporal patterns of CO2 flux in the shrimp ponds. Our findings highlighted the importance and spatiotemporal variations of CO2 flux in the important coastal ecosystems.

Keywords

Carbon dioxide Plot scale Spatiotemporal variation Aquaculture ponds Subtropical estuary 

Notes

Acknowledgments

We extend our appreciation to Dr. Linhai Zhang of the Research Centre of Wetlands in Subtropical Region, Fujian Normal University, for his provision of partial meteorological data. We also sincerely thank the reviewers, editor, and Dr. Derrick Y.F. Lai for their valuable comments.

Funding information

This research was funded by the National Science Foundation of China (No. 41801070, 41671088), the Graduate Student Science and Technology Innovation Project of the School of Geographical Science, Fujian Normal University (No. 20160768) and Minjiang Sholar Programme.

References

  1. Abnizova A, Siemens J, Langer M, Boike J (2012) Small ponds with major impact: the relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Glob Biogeochem Cycles 26:GB2041.  https://doi.org/10.1029/2011GB004237 CrossRefGoogle Scholar
  2. Aiméa J, Allenbach M, Bourgeois C, Léopold A, Jacotot A, Vinh TV, Nho NT, Patrona LD, Marchand C (2018) Variability of CO2 emissions during the rearing cycle of a semi-intensive shrimp farm in a mangrove coastal zone (New Caledonia). Mar Pollut Bull 129:194–206.  https://doi.org/10.1016/j.marpolbul.2018.02.025 CrossRefGoogle Scholar
  3. Aufdenkampe A, Mayorga E, Raymond P, Melack J, Doney S, Alin S, Aalto R, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60.  https://doi.org/10.1007/s1075 CrossRefGoogle Scholar
  4. Bartosiewicz M, Laurion I, MacIntyre S (2015) Greenhouse gas emission and storage in a small shallow lake. Hydrobiologia 757:101–115.  https://doi.org/10.1007/s1075 CrossRefGoogle Scholar
  5. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50.  https://doi.org/10.1126/science.1196808 CrossRefGoogle Scholar
  6. Bastviken D, Sundgren I, Natchimuthu S, Reyier H, Gålfalk M (2015) Technical note: cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences 12:3849–3859.  https://doi.org/10.5194/bgd-12-2357-2015 CrossRefGoogle Scholar
  7. Bodmer P, Heinz M, Pusch M, Singer G, Premke K (2016) Carbon dynamics and their link to dissolved organic matter quality across contrasting stream ecosystems. Sci Total Environ 553:574–586.  https://doi.org/10.1016/j.scitotenv.2016.02.095 CrossRefGoogle Scholar
  8. Borges AV, Speeckaert G, Champenois W, Scranton MI, Gypens N (2017) Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the southern bight of the North Sea. Ecosystems 21:583–599.  https://doi.org/10.1007/s1002 CrossRefGoogle Scholar
  9. Boyd CE, Wood CW, Chaney PL, Queiroz JF (2010) Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environ Pollut 158:2537–2540.  https://doi.org/10.1016/j.envpol.2010.04.025 CrossRefGoogle Scholar
  10. Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC (2003) Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219:393–411.  https://doi.org/10.1016/S0044-8486(02)00575-6 CrossRefGoogle Scholar
  11. Cai ZC (2012) Greenhouse gas budget for terrestrial ecosystems in China. Sci China Earth Sci 55:173–182.  https://doi.org/10.1007/s11430-011-4309-8 CrossRefGoogle Scholar
  12. Chambers LG, Reddy KR, Osborne TZ (2011) Short-Term Response of Carbon Cycling to Salinity Pulses in a Freshwater Wetland. Soil Sci Soc Am J 75:2000–2007.  https://doi.org/10.2136/sssaj2011.0026
  13. Chambers LG, Osborne TZ, Reddy KR (2013) Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115:363–383.  https://doi.org/10.2136/sssaj2011.0026 CrossRefGoogle Scholar
  14. Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365. https://doi.org/10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2Google Scholar
  15. Chen Y, Dong SL, Wang ZN, Wang F, Gao QF, Tian XL, Xiong YH (2015) Variations in CO2 fluxes from grass carp Ctenopharyngodon idella aquaculture polyculture ponds. Aquac Environ Interact 8:31–40.  https://doi.org/10.3354/aei00149 CrossRefGoogle Scholar
  16. Chen Y, Dong SL, Wang F, Gao QF, Tian XL (2016) Carbon dioxide and methane fluxes from feeding and no-feeding mariculture ponds. Environ Pollut 212:489–497.  https://doi.org/10.1016/j.envpol.2016.02.039 CrossRefGoogle Scholar
  17. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570.  https://doi.org/10.1126/science.265.5178.1568 CrossRefGoogle Scholar
  18. Cotovicz LC, Knoppers BA, Brandini N, Poirier D, Costa Santos SJ, Abril G (2016) Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil). Limnol Oceanogr 61:S238–S252.  https://doi.org/10.1002/lno.10298 CrossRefGoogle Scholar
  19. Deforest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci Soc Am J 68(1):132–138.  https://doi.org/10.2136/sssaj2004.1320
  20. Del Giorgio PA, Cole JJ, Caraco N, Peter RH (1999) Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80:1422–1431.  https://doi.org/10.1890/0012-9658 CrossRefGoogle Scholar
  21. DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425.  https://doi.org/10.1021/es9031369 CrossRefGoogle Scholar
  22. Erkkilä KM, Ojala A, Bastviken D, Biermann T, Heiskanen JJ, Lindroth A, Peltola O, Rantakari M, Vesala T, Mammarella I (2018) Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences 15(2):429–445.  https://doi.org/10.5194/bg-15-429-2018 CrossRefGoogle Scholar
  23. Ferrón S, Ortega T, Gomez-Parra A, Forja JM (2007) Seasonal study of dissolved CO2, CH4 and N2O in a shallow tidal system of the bay of Cádiz (SW Spain). J Mar Syst 66:244–257.  https://doi.org/10.1016/j.jmarsys.2006.03.021 CrossRefGoogle Scholar
  24. Glaz P, Bartosiewicz M, Laurion I, Reichwaldt ES, Maranger R, Ghadouani A (2016) Greenhouse gas emissions from waste stabilisation ponds in Western Australia and Quebec (Canada). Water Res 101:64–74.  https://doi.org/10.1016/j.watres.2016.05.060 CrossRefGoogle Scholar
  25. Gruca-Rokosz R, Bartoszek L, Koszelnik P (2017) The influence of environmental factors on the carbon dioxide flux across the water-air interface of reservoirs in south-eastern Poland. J Environ Sci 56:290–299.  https://doi.org/10.1016/j.jes.2016.10.011 CrossRefGoogle Scholar
  26. Gu B, Schelske CL, Coveney MF (2011) Low carbon dioxide partial pressure in a productive subtropical lake. Aquat Sci 73:317–330.  https://doi.org/10.1007/s00027-010-0179-y CrossRefGoogle Scholar
  27. Hamilton JD, Kelly CA, Rudd JWM, Hesslein RH, Roulet NT (1994) Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). J Geophys Res-Atmos 99:1495–1510.  https://doi.org/10.1029/93JD03020 CrossRefGoogle Scholar
  28. Hirota M, Senga Y, Seike Y, Nohara S, Kunii H (2007) Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere 68(3):597–603.  https://doi.org/10.1016/j.chemosphere.2007.01.002 CrossRefGoogle Scholar
  29. Holgerson MA (2015) Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry 124(1–3):305–318.  https://doi.org/10.1007/s10533-015-0099-y CrossRefGoogle Scholar
  30. Holgerson MA, Raymond PA (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9:222–226.  https://doi.org/10.1038/ngeo2654 CrossRefGoogle Scholar
  31. Hu MJ, Wilson BJ, Sun ZG, Ren P, Tong C (2017) Effects of the addition of nitrogen and sulfate on CH and CO emissions, soil, and pore water chemistry in a high marsh of the Min River estuary in southeastern China. Sci Total Environ 579:292–304.  https://doi.org/10.1016/j.scitotenv.2016.11.103
  32. Humborg C, Mörth C, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekkot V (2010) CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Chang Biol 16:1966–1978.  https://doi.org/10.1111/j.1365-2486.2009.02092.x CrossRefGoogle Scholar
  33. Huttunen JT, Väisänen TS, Hellsten SK, Heikkinen M, Nykänen H, Jungner H, Niskanen A, Virtanen MO, Lindqvist OV, Nenonen OS, Martikainen PJ (2002) Fluxes of CH , CO , and N O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Global Biogeochem Cy 16.  https://doi.org/10.1029/2000GB001316
  34. Huttunen JT, Alm J, Liikanena A, Juutinen S, Larmola T, Hammar T, Silvola J, Martikainen PJ (2003) Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52:609–621.  https://doi.org/10.1016/S0045-6535(03)00243-1 CrossRefGoogle Scholar
  35. Intergovernmental Panel on Climate Change (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) IPCC climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  36. Jacinthe PA, Filippelli GM, Tedesco LP, Raftis R (2012) Carbon storage and greenhouse gases emission from a fluvial reservoir in an agricultural landscape. Catena 94:53–63.  https://doi.org/10.1016/j.catena.2011.03.012 CrossRefGoogle Scholar
  37. Jeffrey LC, Maher DT, Santos IR, Call M, Reading MJ, Holloway C, Tait DR (2018) The spatial and temporal drivers of pCO2, pCH4 and gas transfer velocity within a subtropical estuary. Estuar Coast Shelf Sci 208:83–95.  https://doi.org/10.1016/j.ecss.2018.04.022
  38. Koelbener A, Ström L, Edwards PJ, Venterink HO (2010) Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant Soil 326:147–158.  https://doi.org/10.1007/s11104-009-9989-x CrossRefGoogle Scholar
  39. Kutzbach L, Wille C, Pfeiffer EM (2007) The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, northern Siberia. Biogeosciences 4:869–890.  https://doi.org/10.5194/bg-4-869-2007 CrossRefGoogle Scholar
  40. Marton JM, Herbert ER, Craft CB (2012) Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils. Wetlands 32:347–357.  https://doi.org/10.1007/s13157-012-0270-3 CrossRefGoogle Scholar
  41. Natchimuthu S, Panneer Selvam B, Bastviken D (2014) Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119:403–413CrossRefGoogle Scholar
  42. Natchimuthu S, Sundgren I, Gålfalk M, Klemedtsson L, Crill P, Danielsson Å, Bastviken D (2016) Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates. Limnol Oceanogr 61:S13–S26.  https://doi.org/10.1002/lno.10222 CrossRefGoogle Scholar
  43. Natchimuthu S, Sundgren I, Gålfalk M, Klemedtsson L, Bastviken D (2017) Spatiotemporal variability of lake pCO2 and CO2 fluxes in a hemiboreal catchment. J Geophys Res Biogeo 122:30–49.  https://doi.org/10.1002/2016JG003449 CrossRefGoogle Scholar
  44. Neal C, House WA, Jarvie HP, Eatherall A (1998) The significance of dissolved carbon dioxide in major lowland rivers entering the North Sea. Sci Total Environ 210-211(1-6):187–203.  https://doi.org/10.1016/S0048-9697(98)00012-6
  45. Neubauer SC (2013) Ecosystem responses of a tidal freshwater marsh experiencing salt water intrusion and alteired hydrology. Estuar Coast 36:491–507.  https://doi.org/10.1007/s12237-01109455-x CrossRefGoogle Scholar
  46. Paasche E (1960) On the Relationship between Primary Production and Standing Stock of Phytoplankton. ICES J Mar Sci 26(1):33–48.  https://doi.org/10.1093/icesjms/26.1.33
  47. Paz MPJ, Inguaggiato S, Taran Y, Vita F, Pecoraino G (2016) Carbon dioxide emissions from Specchio di Venere, Pantelleria, Italy. Bull Volcanol 78:29–41.  https://doi.org/10.1007/s00445-016-1023-6 CrossRefGoogle Scholar
  48. Ran LS, Lu XX, Yang H, Li LY, Yu RH, Sun HG, Han JT (2015) CO2 outgassing from the Yellow River network and its implications for riverine carbon cycle. J Geophys Res Biogeo 120:1334–1347.  https://doi.org/10.1002/2015JG002982 CrossRefGoogle Scholar
  49. Rasera MF, Krusche A, Richey J, Ballester M, Victória R (2013) Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers. Biogeochemistry 116:241–259.  https://doi.org/10.1007/s10533-013-9854-0 CrossRefGoogle Scholar
  50. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359.  https://doi.org/10.1038/nature12760 CrossRefGoogle Scholar
  51. Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can J Fish Aquat Sci 56:265–274.  https://doi.org/10.1139/f98-182
  52. Roehm CL, Prairie YT, Giorgio PA (2009) The pCO2 dynamics in lakes in the boreal region of northern Québec, Canada. Glob Biogeochem Cycles 23:GB3013.  https://doi.org/10.1029/2008GB003297 CrossRefGoogle Scholar
  53. Rudorff CM, Melack JM, MacIntyre S, Barbosa CCF, Novo EMLM (2011) Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon. J Geophys Res Oceans 116:G04007.  https://doi.org/10.1029/2011JG001699 CrossRefGoogle Scholar
  54. Schade JD, Bailio J, McDowell WH (2016) Greenhouse gas flux from headwater streams in New Hampshire, USA: patterns and drivers. Limnol Oceanogr 61:S165–S174.  https://doi.org/10.1002/lno.10337 CrossRefGoogle Scholar
  55. Schrier-Uijl AP, Veraart AJ, Leffelaar PA, Berendse F, Veenendaal EM (2011) Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102:265–279.  https://doi.org/10.1007/s10533-010-9440-7 CrossRefGoogle Scholar
  56. Scofield V, Melack JM, Barbosa PM, Farjalla VF (2016) Carbon dioxide outgassing from Amazonian aquatic ecosystems in the Negro River basin. Biogeochemistry 129:77–91.  https://doi.org/10.1007/s10533-016-0220-x CrossRefGoogle Scholar
  57. Selvam BP, Natchimuthu S, Arunachalam L, Bastviken D (2014) Methane and carbon dioxide emissions from inland waters in India–implications for large scale greenhouse gas balances. Glob Chang Biol 20:3397–3407.  https://doi.org/10.1111/gcb.12575 CrossRefGoogle Scholar
  58. Sobek S, Tranvik LJ, Cole JJ (2005) Temperature independence of carbon dioxide supersaturation in global lakes. Glob Biogeochem Cycles 19:GB2003.  https://doi.org/10.1029/2004GB002264 CrossRefGoogle Scholar
  59. Soumis N, Duchemin E, Canuel R, Lucotte M (2004) Greenhouse gas emissions from reservoirs of the western United States. Glob Biogeochem Cycles 18:GB3022.  https://doi.org/10.1029/2003GB002197 CrossRefGoogle Scholar
  60. St. Louis V, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience 50:766–775.  https://doi.org/10.1641/0006-3568 CrossRefGoogle Scholar
  61. Tangen BA, Finocchiaro RG, Gleason RA, Dahl CF (2016) Greenhouse gas fluxes of a shallow lake in South-Central North Dakota, USA. Wetlands 36:779–787.  https://doi.org/10.1007/s13157-016-0782-3
  62. Tonetta D, Staehr PA, Petrucio MM (2017) Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake. Hydrobiologia 794:109–123.  https://doi.org/10.1007/s10750-017-3085-7 CrossRefGoogle Scholar
  63. Tong C, Wang WQ, Zeng CS, Marrs R (2010) Methane emissions from a tidal marsh in the Min River estuary, southeast China. J Environ Sci Health A 45:506–516.  https://doi.org/10.1080/10934520903542261 CrossRefGoogle Scholar
  64. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman B, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314.  https://doi.org/10.4319/lo.2009.54.6part2
  65. Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55:1723–1732.  https://doi.org/10.4319/lo.2010.55.4.1723 CrossRefGoogle Scholar
  66. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res Oceans 97:7373–7382.  https://doi.org/10.1029/92JC00188 CrossRefGoogle Scholar
  67. Wen ZD, Song KS, Zhao Y, Jin X (2016) Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region, northeastern China. Atmos Environ 138:65–73.  https://doi.org/10.1016/j.atmosenv.2016.05.009 CrossRefGoogle Scholar
  68. World Meteorological Organization (2016) WMO Greenhouse Gas Bulletin No. 12 (October 2016). https://library.wmo.int/opac/docnum.php?explnumid=3084.pdf. Accessed 1 Feb 2018
  69. Xing YP, Xie P, Yang H, Ni LY, Wang YS, Tang WH (2004) Diel variation of methane fluxes in summer in a eutrophic subtropical lake in China. J Freshw Ecol 19:639–644.  https://doi.org/10.1080/02705060.2004.9664745 CrossRefGoogle Scholar
  70. Xing YP, Xie P, Yang H, Ni LY, Wang YS, Rong KW (2005) Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical lake in China. Atmos Environ 39:5532–5540.  https://doi.org/10.1016/j.atmosenv.2005.06.010 CrossRefGoogle Scholar
  71. Xing YP, Xie P, Yang H, Wu AP, Ni LY (2006) The change of gaseous carbon fluxes following the switch of dominant producers from macrophytes to algae in a shallow subtropical lake of China. Atmos Environ 40:8034–8043.  https://doi.org/10.1016/j.atmosenv.2006.05.033 CrossRefGoogle Scholar
  72. Yang H, Flower RJ (2012) Potentially massive greenhouse-gas sources in proposed tropical dams. Front Ecol Environ 10:234–235.  https://doi.org/10.2307/41811805 CrossRefGoogle Scholar
  73. Yang H, Xing Y, Xie P, Ni L, Rong K (2008) Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance. Environ Pollut 151:559–568.  https://doi.org/10.1016/j.envpol.2007.04.006 CrossRefGoogle Scholar
  74. Yang H, Xie P, Ni L, Flower RJ (2011) Underestimation of CH4 emission from freshwater lakes in China. Environ Sci Technol 45:4203–4204.  https://doi.org/10.1021/es2010336 CrossRefGoogle Scholar
  75. Yang P, Tong C, He QH, Huang JF (2012) Diurnal variations of greenhouse gas fluxes at the water-air interface of aquaculture ponds in the Min River estuary. Environ Sci 33(12):4194–4204 (in Chinese).  https://doi.org/10.13227/j.hjkx.2012.12.023 CrossRefGoogle Scholar
  76. Yang H, Andersen T, Dörsch P, Tominaga K, Thrane JE, Hessen DO (2015a) Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry 126:211–225.  https://doi.org/10.1007/s1053 CrossRefGoogle Scholar
  77. Yang P, He QH, Huang JF, Tong C (2015b) Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmos Environ 115:269–277.  https://doi.org/10.1016/j.atmosenv.2015.05.067 CrossRefGoogle Scholar
  78. Yang P, Lai DYF, Jin BS, Bastviken D, Tan LS, Tong C (2017a) Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: concentrations, fluxes and environmental loads. Sci Total Environ 603–604:256–267.  https://doi.org/10.1016/j.scitotenv.2017.06.074 CrossRefGoogle Scholar
  79. Yang WB, Yuan CS, Tong C, Yang P, Yang L, Huang BQ (2017b) Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland. Mar Pollut Bull 119:289–298.  https://doi.org/10.1016/j.marpolbul.2017.04.005 CrossRefGoogle Scholar
  80. Yang P, Zhang YF, Lai DYF, Tan LS, Jin BS, Tong C (2018) Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: the effect of temperature, substrate, salinity and nitrate. Sci Total Environ 635:1025–1035.  https://doi.org/10.1016/j.scitotenv.2018.04.102
  81. Yao YC, Ren CY, Wang ZM, Wang C, Deng PY (2016) Monitoring of salt ponds and aquaculture ponds in the coastal zone of China in 1985 and 2010. Wetl Sci 14:874–882 (in Chinese)Google Scholar
  82. Zhang WL, Zeng CS, Tong C, Zhai SJ (2015) Spatial distribution of phosphorus speciation in marsh sediments along a hydrologic gradient in a subtropical estuarine wetland, China. Estuar Coast Shelf Sci 154:30–38.  https://doi.org/10.1016/j.ecss.2014.12.023 CrossRefGoogle Scholar
  83. Zhao Y, Wu BF, Zeng Y (2013) Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences 10:1219–1230.  https://doi.org/10.5194/bg-10-1219-2013 CrossRefGoogle Scholar
  84. Zhu RB, Liu YS, Xu H, Huang T, Sun JJ, Ma ED, Sun LG (2010) Carbon dioxide and methane fluxes in the littoral zones of two lakes, East Antarctica. Atmos Environ 44:304–311.  https://doi.org/10.1016/j.atmosenv.2009.10.038 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of EducationFujian Normal UniversityFuzhouPeople’s Republic of China
  2. 2.School of Geographical SciencesFujian Normal UniversityFuzhouPeople’s Republic of China
  3. 3.Research Centre of Wetlands in Subtropical RegionFujian Normal UniversityFuzhouPeople’s Republic of China
  4. 4.Department of Geography and Environmental ScienceUniversity of ReadingReadingUK
  5. 5.College of Environmental Science and EngineeringFujian Normal UniversityFuzhouPeople’s Republic of China
  6. 6.Nanping Meteorological BureauNanpingPeople’s Republic of China

Personalised recommendations