Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors

  • George Harrison Ferreira de Carvalho
  • Milene Aparecida de Andrade
  • Carla Nunes de Araújo
  • Maria Lucília Santos
  • Natália Alves de Castro
  • Sébastien Charneau
  • Rose Monnerat
  • Jaime Martins de SantanaEmail author
  • Izabela Marques Dourado BastosEmail author
Research Article


Aedes aegypti and Culex quinquefasciatus are vectors of diseases that constitute public health problems. The discovery of products capable of inhibiting their development which are less harmful to the environment would have a huge impact on vector control. Here, natural cashew nut shell liquid (CNSL), technical CNSL, anacardic acid, cardanol, and cardol were isolated from Anacardium occidentale and evaluated for larvicidal and pupicidal activity against Ae. aegypti and Cx. quinquefasciatus under laboratory and field conditions. The activities of phenol, resorcinol, salicylic acid, and pentadecane, commercial chemicals similar in structure to nut shell derivatives, were also evaluated. All of the fractions extracted from A. occidentale oil exerted larvicidal effects against both mosquito species (LC50 5.4–22.6 mg/L), and two of the aforementioned were effective against pupae (LC50 90.8–109.7 mg/L). Of all the fractions tested, cardol demonstrated the strongest larvicidal and pupicidal effects and presented the most prolonged residual activity against the larvae and pupae of Ae. aegypti and Cx. quinquefasciatus under field conditions. This study suggests that A. occidentale nut shell derivatives are sustainable and promising candidates for the development of novel insecticides to overcome the problem of harmful chemical insecticides.


Aedes aegypti Culex quinquefasciatus Insecticidal activity Cashew nut shell liquid (CNSL) Field experiment Cardol Cardanol Anacardic acid 



We would like to thank EMBRAPA Genetic Resources and Biotechnology for providing the third instar larvae and pupae of Ae. aegypti and Cx. quinquefasciatus.


This work was supported by grants and fellowships awarded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, grant 923/18 CAPES-COFECUB), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, INCT-MCTI/CNPq/CAPES/FAPs 16/2014), Fundação de Amparo à Pesquisa do Distrito Federal (FAP-DF, grants 0913.000.417/2016 and 0193.001803/2017), and the Empresa Brasileira de Pesquisa Agropecuária (Embrapa).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_3905_MOESM1_ESM.docx (33 kb)
ESM 1 (DOCX 32 kb)
11356_2018_3905_Fig5_ESM.png (407 kb)
Online Resource 1

(PNG 406 kb)

11356_2018_3905_MOESM2_ESM.tiff (1.9 mb)
High Resolution Image (TIFF 1981 kb)
11356_2018_3905_Fig6_ESM.png (231 kb)
Online Resource 3

(PNG 231 kb)

11356_2018_3905_MOESM3_ESM.tiff (465 kb)
High Resolution Image (TIFF 464 kb)
11356_2018_3905_Fig7_ESM.png (251 kb)
Online Resource 5

(PNG 250 kb)

11356_2018_3905_MOESM4_ESM.tiff (508 kb)
High Resolution Image (TIFF 508 kb)


  1. Arruda W, Oliveira GMC, Silva IG (2003) Toxicidade do extrato etanólico de Magonia pubescens sobre larvas de Aedes aegypti. Rev Soc Bras Med Trop 36:17–25. CrossRefGoogle Scholar
  2. Attina TM, Hauser R, Sathyanarayana S, Hunt PA, Bourguignon JP, Myers JP, DiGangi J, Zoeller RT, Trasande L (2016) Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol 4:996–1003. CrossRefGoogle Scholar
  3. Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res 25:12329–11234. CrossRefGoogle Scholar
  4. Benelli G, Duggan MF (2018) Management of arthropod vector data – social and ecological dynamics facing the one health perspective. Acta Trop 182:80–91. CrossRefGoogle Scholar
  5. Bhattacharya S, Basu P (2016) The southern house mosquito, Culex quinquefasciatus: profile of a smart vector. J Entomol Zool Studies 4:73–81Google Scholar
  6. Braga IA, Valle D (2007) Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiol Serv Saúde 16:179–293. CrossRefGoogle Scholar
  7. Brogdon WG, McAllister JC (1998) Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. J Am Mosq Control Assoc 14:159–164Google Scholar
  8. Campos J, Andrade CFS (2001) Susceptibilidade larval de duas populaçõeses de Aedes aegypti a inseticidas químicos. Rev Saude Publica 35:232–236. CrossRefGoogle Scholar
  9. Campos G, Bandeira A, Sardi S (2015) Zika Virus Outbreak, Bahia Brazil. Emerg Infect Dis 21:1881–1885. CrossRefGoogle Scholar
  10. Carbone P, Giordano F, Nori F, Mantovani A, Taruscio D, Lauria L, Figà-Talamanca I (2006) Cryptorchidism and hypospadias in the Sicilian district of Ragusa and the use of pesticides. Reprod Toxicol 22:8–12. CrossRefGoogle Scholar
  11. Carvalho MDSL, Caldas ED, Degallier N, Vilarinhos PDTR, Souza LCKR, Yoshizawa MAC, Knox MB, Oliveira C (2004) Susceptibility of Aedes aegypti larvae to the insecticide temephos in the Federal District. Brazil Rev Saude Publica 38:623–629CrossRefGoogle Scholar
  12. Consoli RA, Mendes NM, Pereira JP, Santos BS, Lamounier MA (1988) Influência de diversos derivados de vegetais na sobrevida das larvas de Aedes fluviatilis (Lutz) (Diptera: Culicidae) em laboratório. Mem Inst Oswaldo Cruz 83:87–93. CrossRefGoogle Scholar
  13. Dinh Pham L, Huy Tran Phung N, Tu Dang Le N, Quang Vo T (2017) Economic report on the cost of dengue fever in Vietnam: case of a provincial hospital. Clin Outcomes Res 9:1–8. CrossRefGoogle Scholar
  14. dos Santos ML, de Magalhães GC (1999) Utilisation of cashew nut shell liquid from Anacardium occidentale as starting material for organic synthesis: a novel route to lasiodiplodin from cardols. J Braz Chem Soc 10:13–20. CrossRefGoogle Scholar
  15. Finney D (1971) Probit analysis. 3rd edition. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  16. Forattini OP, Gomes AC, Galati EA, Rabello EX, Iversson LB (1978) Estudos ecológicos sobre mosquitos Culicidae no sistema da Serra do Mar, Brasil. 1--Observações no ambiente extradomiciliar. Rev Saude Publica 12:297–325. CrossRefGoogle Scholar
  17. Guedes DRD, Paiva MHS, Donato MMA, Barbosa PP, Krokovsky L, Rocha SWS, Saraiva KLA, Crespo MM, Rezende TMT, Wallau GL, Barbosa RMR, Oliveira CMF, Melo-Santos MAV, Pena L, Cordeiro MT, Franca RFDO, Oliveira ALS, Peixoto CA, Leal WS, Ayres CFJ (2017) Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg Microbes Infect 6:e69. CrossRefGoogle Scholar
  18. Guissoni ACP, Silva IG, Geris R, Cunha LC, Silva HHG (2013) Atividade larvicida de Anacardium occidentale como alternativa ao controle de Aedes aegypti e sua toxicidade em Rattus norvegicus. Rev Bras Plantas Med 15:363–367. CrossRefGoogle Scholar
  19. Hennessey MJ, Fischer M, Panella AJ, Kosoy OI, Laven JJ, Lanciotti RS, Staples JE (2016) Zika virus disease in travelers returning to the United States, 2010–2014. Am J Trop Med Hyg 95(1):212–215. CrossRefGoogle Scholar
  20. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern Agri- culture and an increasingly regulated world. Annu Rev Entomol 51:45–66. CrossRefGoogle Scholar
  21. Isman MB (2017) Bridging the gap: moving botanical insecticides from the laboratory to the farm. Ind Crop Prod 110:10–14. CrossRefGoogle Scholar
  22. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. Elife 4:1–18. CrossRefGoogle Scholar
  23. Kristensen P, Irgens L, Andersen A, Snellingen A, Sundheim L (1997) Birth defects among offspring of norwegia farmers 1967 - 1991. Epidemiology 8:537–544CrossRefGoogle Scholar
  24. Kubo I, Nihei K-I, Tsujimoto K (2003) Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA). J Agric Food Chem 51:7624–7628. CrossRefGoogle Scholar
  25. Macoris MDLG, Andrighetti MTM, Takaku L, Glasser CM, Garbeloto VC, Bracco JE (2003) Resistance of Aedes aegypti from the state of São Paulo, Brazil, to organophosphates insecticides. Mem Inst Oswaldo Cruz 98:703–708. CrossRefGoogle Scholar
  26. Mazzetto SE, Lomonaco D, Mele G (2009) Oleo da castanha de caju: Oportunidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. Quim Nova 32:732–741. CrossRefGoogle Scholar
  27. Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8:2265–2303. CrossRefGoogle Scholar
  28. Mutheneni SR, Morse AP, Caminade C, Upadhyayula SM (2017) Dengue burden in India: recent trends and importance of climatic parameters. Emerg Microbes Infect 6:e70. CrossRefGoogle Scholar
  29. Nagabhushana KS, Umamaheshwari S, Tocoli FE, Prabhu SK, Green IR, Ramadoss CS (2002) Inhibition of soybean and potato lipoxygenases by Bhilawanols from Bhilawan (Semecarpus anacardium) nut shell liquid and some synthetic salicylic acid analogues. J Enzyme Inhib Med Chem 17:255–259. CrossRefGoogle Scholar
  30. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426. CrossRefGoogle Scholar
  31. Oliveira MSC, Morais SM, Magalhães DV, Batista WP, Vieira ÍGP, Craveiro AA, Manezes JESA, Carvalho AFU, Lima GPG (2011) Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop 117:165–170. CrossRefGoogle Scholar
  32. Patil SV, Patil CD, Salunkhe RB, Salunke BK (2010) Larvicidal activities of six plants extracts against two mosquito species, Aedes aegypti and Anopheles stephensi. Trop Biomed 27:360–365Google Scholar
  33. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187. CrossRefGoogle Scholar
  34. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007. CrossRefGoogle Scholar
  35. Pham Thi KL, Briant L, Gavotte L, Labbe P, Perriat-Sanguinet M, Cornillot E, Vu TD, Nguyen TY, Tran VP, Nguyen VS, Devaux C, Afelt A, Tran CC, Phan TN, Tran ND, Frutos R (2017) Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vietnam. Parasit Vectors 10:1–10. CrossRefGoogle Scholar
  36. Rocha EM, Fontes G, Brito AC, Silva TR, Medeiros Z, Antunes CM (2000) Filariose bancroftiana em áreas urbanas do Estado de Alagoas, nordeste do Brasil: estudo em população geral. Rev Soc Bras Med Trop 33:545–551. CrossRefGoogle Scholar
  37. Silva HH, Silva IG (1999) Influência do período de quiescência dos ovos sobre o ciclo de vida de Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae) em condições de laboratório. Rev Soc Bras Med Trop 32:349–355. CrossRefGoogle Scholar
  38. Silva I, Zanon V, Silva HH (2003) Larvicidal activity of Copaifera reticulata Ducke oil-resin against Culex quinquefasciatus say (Diptera: Culicidae). Neotrop Entomol 32:1992–1995. CrossRefGoogle Scholar
  39. Silva HHG, Silva IG, Santos RMG, Rodrigues FE, Elias CN (2004) Larvicidal activity of tannins isolated of Magonia pubescens St. Hil. (Sapindaceae) against Aedes aegypti (Diptera, Culicidae). Rev Soc Bras Med Trop 37:396–399CrossRefGoogle Scholar
  40. Stasiuk M, Kozubek A (2010) Biological activity of phenolic lipids. Cell Mol Life Sci 67:841–860. CrossRefGoogle Scholar
  41. Throne JE, Weaver DK, Baker JE (1995) Probit analysis: assessing goodness-of-fit based on backtransformation and residuals. J Econ Entomol 88(5):1513–1516. CrossRefGoogle Scholar
  42. Torres RC, Garbo AG, Walde RZML (2015) Characterization and bioassay for larvicidal activity of Anacardium occidentale (cashew) shell waste fractions against dengue vector Aedes aegypti. Parasitol Res 114:3699–3702. CrossRefGoogle Scholar
  43. Trevisan MTS, Pfundstein B, Haubner R, Würtele G, Spiegelhalder B, Bartsch H, Owen RW (2006) Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol 44:188–197. CrossRefGoogle Scholar
  44. Vivekanandhan P, Venkatesan R, Ramkumar G, Karthi S, Senthil-Nathan S, Shivakumar MS (2018a) Comparative analysis of major mosquito vectors response to seed-derived essential oil and seed pod-derived extract from Acacia nilotica. Int J Environ Res Public Health 23:388–398. CrossRefGoogle Scholar
  45. Vivekanandhan P, Senthil-Nathan S, Shivakumar MS (2018b) Larvicidal, pupicidal and adult smoke toxic effects of Acanthospermum hispidum (DC) leaf crude extracts against mosquito vectors. Physiol Mol Plant Pathol 101:156–162. CrossRefGoogle Scholar
  46. Wu Y, He L, Zhang L, Chen J, Yi Z, Zhang J, Liu M (2011) Anacardic acid ( 6-Pentadecylsalicylic acid ) inhibits tumor angiogenesis by targeting Src / FAK / rho GTPases signaling pathway. J Pharmacol Exp Ther 339:403–411. CrossRefGoogle Scholar
  47. Xiu Y-L, Zhao Y, Gou W-F, Chen S, Takano Y, Zheng H-C (2014) Anacardic acid enhances the proliferation of human ovarian Cancer cells. PLoS One 9:e99361. CrossRefGoogle Scholar
  48. Zanluca C, Melo VCA, Mosimann ALP, Santos GIV, Santos CND, Luz K (2015) First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 110:569–572. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • George Harrison Ferreira de Carvalho
    • 1
  • Milene Aparecida de Andrade
    • 1
  • Carla Nunes de Araújo
    • 1
  • Maria Lucília Santos
    • 2
  • Natália Alves de Castro
    • 1
  • Sébastien Charneau
    • 3
  • Rose Monnerat
    • 4
  • Jaime Martins de Santana
    • 1
    Email author
  • Izabela Marques Dourado Bastos
    • 1
    Email author return OK on get
  1. 1.Pathogen-Host Interface Laboratory, Department of Cell BiologyUniversity of BrasiliaBrasiliaBrazil
  2. 2.Institute of ChemistryUniversity of BrasiliaBrasiliaBrazil
  3. 3.Laboratory of Protein Chemistry and Biochemistry, Department of Cell BiologyUniversity of BrasiliaBrasiliaBrazil
  4. 4.Embrapa Genetic Resources and BiotechnologyBrasiliaBrazil

Personalised recommendations