Environmental Science and Pollution Research

, Volume 26, Issue 4, pp 3771–3794 | Cite as

Aerosol and pollutant characteristics in Delhi during a winter research campaign

  • Umesh C. DumkaEmail author
  • Suresh Tiwari
  • Dimitris G. Kaskaoutis
  • Vijay K. Soni
  • Promod D. Safai
  • Shiv D. Attri
Research Article


Urban areas in developing countries are major sources of carbonaceous aerosols and air pollutants, pointing out the need for a detailed assessment of their levels and origin close to the source. A multi-instrument research campaign was performed in Delhi during December 2015–February 2016 aimed at exploring the pollution levels and the contribution of various sources to particulate matter (PM) concentrations, black carbon (BC) aerosols, and trace gases. The weak winds (< 5–6 m s−1) along with the shallow boundary layer favoured the formation of thick and persistent fog conditions, which along with the high BC (24.4 ± 12.2 μg m−3) concentrations lead to the formation of smog. Very high pollution levels were recorded during the campaign, with mean PM10, PM2.5, CO, NO, and O3 concentrations of 245.5 ± 109.8 μg m−3, 145.5 ± 69.5 μg m−3, 1.7 ± 0.5 ppm, 7.9 ± 2.3 ppb, and 31.3 ± 18.4 ppb, respectively. This study focuses on examining the daily/diurnal cycles of the aerosol optical properties (extinction, scattering, absorption coefficients, single scattering albedo), as well as of PM and other pollutant concentrations, along with changes in meteorology (mixing-layer height and wind speed). In addition, the hot-spot pollution sources in the greater Delhi area were determined via bivariate plots and conditional bivariate probability function (CBPF), while the distant sources were examined via the concentration weighted trajectory (CWT) analysis. The results show that the highest aerosol absorption and scattering coefficients, PM, and trace gas concentrations are detected for weak winds (< 2 m s−1) with a preference for eastern directions, revealing high contribution from local sources and accumulation of pollutants within urban Delhi.


Air pollution Carbonaceous aerosol PM Precursor gases Source contribution Delhi 



The authors are grateful to the Prof. Ravi S. Nanjundiah, Director, IITM, Pune; Dr. K. G. Ramesh, Director General, Indian Meteorological Department; and Dr. M. Rajeevan, Secretary, Ministry of Earth Science, Government of India, and Director, Indian Agricultural Research Institute, New Delhi, for their constant encouragement and continuous support for carrying out the Fog experiment (a national program of the Ministry) over Delhi during the winter period. The authors gratefully acknowledge the NOAA Air Resource Laboratory team for the provision of the HYSPLIT transport and dispersion model used in the current work.


  1. Agarwal T (2009) Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J Hazard Mater 171:894–900CrossRefGoogle Scholar
  2. Akagi SK, Yokelson RJ, Burling IR, Meinardi S, Simpson I, Blake DR, McMeeking GR, Sullivan A, Lee T, Kreidenweis S, Urbanski S, Reardon J, Griffith DWT, Johnson TJ, Weise DR (2013) Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes. Atmos Chem Phys 13:1141–1165CrossRefGoogle Scholar
  3. Arif M, Kumar R, Kumar R, Zusman E, Singh RP, Gupta A (2018) Assessment of indoor & outdoor black carbon emissions in rural areas of Indo-Gangetic Plain: seasonal characteristics, source apportionment and radiative forcing. Atmos Environ 191:227–240CrossRefGoogle Scholar
  4. Badarinath KVS, Kharol SK, Sharma AR, Roy PS (2009) Fog over Indo-Gangetic plains – a study using multisatellite data and ground observations. IEEE J Sel Top Appl Earth Obs Remote Sensing 2(3):185–195CrossRefGoogle Scholar
  5. Beelen R, Hoek G, van den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, Jerrett M, Hughes E, Armstrong B, Brunekree B (2008) Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Perspect 116:196–202CrossRefGoogle Scholar
  6. Behera SN, Sharma M (2010) Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci Total Environ 408:3569–3575CrossRefGoogle Scholar
  7. Bisht DS, Dumka UC, Kaskaoutis DG, Pipal AS, Srivastava AK, Soni V, Attri SD, Sateesh M, Tiwari S (2015) Carbonaceous aerosols and pollutants over Delhi urban environment: temporal evolution, source apportionment and radiative forcing. Sci Total Environ 521–522:431–445CrossRefGoogle Scholar
  8. Bisht DS, Tiwari S, Dumka UC, Srivastava AK, Safai PD, Ghude SD, Chate DM, Rao PSP, Ali K, Prabhakaran T, Panickar AS, Soni VK, Attri SD, Tunved P, Chakrabarty RK, Hopke PK (2016) Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. Sci Total Environ 573:894–905CrossRefGoogle Scholar
  9. Bosch C, Andersson A, Kirillova EN, Budhavant K, Tiwari S, Praveen PS, Russell LM, Beres ND, Ramanathan V, Gustafsson Ö (2014) Source diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean. J Geophys Res 119:11,743–11,759. Google Scholar
  10. Cheng Y, Engling G, He K-B, Duan F-K, Ma Y-L, Du Z-Y, Liu J-M, Zheng M, Weber RJ (2013) Biomass burning contribution to Beijing aerosol. Atmos Chem Phys 13:7765–7781CrossRefGoogle Scholar
  11. Choudhary V, Rajput P, Singh DK, Singh AK, Gupta T (2017) Light absorption characteristics of brown carbon during foggy and non-foggy episodes over the Indo-Gangetic Plain. Atmos Poll Res.
  12. Cohen JB, Wang C (2014) Estimating global black carbon emissions using a top-down Kalman filter approach. J Geophys Res 119:307–323. Google Scholar
  13. Collaud Coen M, Weingartner E, Apituley A, Ceburnis D, Fierz-Schmidhauser R, Flentje H, Henzing JS, Jennings SG, Moerman M, Petzold A, Schmid O, Baltensperger U (2010) Minimizing light absorption measurement artifacts of the aethalometer: evaluation of five correction algorithms. Atmos Meas Tech 3:457–474CrossRefGoogle Scholar
  14. Das SK, Jayaraman A, Misra A (2008) Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing. Ann Geophys 26:1345–1354CrossRefGoogle Scholar
  15. Draxler RR, Rolph GD (2016) HYSPLIT (HYbrid Single-particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY. NOAA Air Resources Laboratory, Silver Spring (Website. Scholar
  16. Drinovec L, Mocnik G, Zotter P, Prévôt ASH, Ruckstuhl C, Coz E, Rupakheti M, Sciare J, Müller T, Wiedensohler A, Hansen ADA (2015) The “dual-spot” aethalometer: an improved measurement of aerosol black carbon with realtime loading compensation. Atmos Meas Tech 8:1965–1979CrossRefGoogle Scholar
  17. Dumka UC, Kaskaoutis DG, Srivastava MK, Devara PCS (2015a) Scattering and absorption properties of near-surface aerosol over Gangetic-Himalayan region: the role of boundary layer dynamics and long-range transport. Atmos Chem Phys 15:1555–1572CrossRefGoogle Scholar
  18. Dumka UC, Bhattu D, Tripathi SN, Kaskaoutis DG, Madhavan BLM (2015b) Seasonal inhomogeneity in cloud precursors over Gangetic Himalayan region during GVAX campaign. Atmos Res 155:158–175CrossRefGoogle Scholar
  19. Dumka UC, Tiwari S, Kaskaoutis DG, Hopke PK, Singh J, Srivastava AK, Bisht DS, Attri SD, Tyagi S, Misra A, Pasha GSM (2017) Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. J Atmos Chem 74:423–450CrossRefGoogle Scholar
  20. Dumka UC, Kaskaoutis DG, Tiwari S, Safai PD, Attri SD, Soni VK, Singh N, Mihalopoulos N (2018) Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmos Environ 194:93–109CrossRefGoogle Scholar
  21. Dumka UC, Kaskaoutis DG, Devara PCS, Kumar R, Kumar S, Tiwari S, Gerasopoulos E, Mihalopoulos N (2019) Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts. Atmos Res 216:11–25CrossRefGoogle Scholar
  22. Eck TF, Holben BN, Dubovik O, Smirnov A, Goloub P, Chen HB, Chatenet B, Gomes L, Zhang X-Y, Tsay S-C, Ji Q, Giles D, Slutsker I (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J Geophys Res 110:D06202. CrossRefGoogle Scholar
  23. Eck TF, Holben BN, Reid JS, Giles DM, Rivas MA, Singh RP, Tripathi SN, Bruegge CJ, Platnick S, Arnold GT, Krotkov NA, Carn SA, Sinyuk A, Dubovik O, Arola A, Schafer JS, Artaxo P, Smirnov A, Chen H, Goloub P (2012) Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET). J Geophys Res 117:D07206. CrossRefGoogle Scholar
  24. Fleming ZL, Monks PS, Manning AJ (2012) Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104-105:1–39CrossRefGoogle Scholar
  25. Fourtziou L, Liakakou E, Stavroulas I, Theodosi C, Zarmpas P, Psiloglou B, Sciare J, Maggos T, Bairachtari K, Bougiatioti A, Gerasopoulos E, Sarda-Esteve R, Bonnaire N, Mihalopoulos N (2017) Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime. Atmos Environ 148:89–101CrossRefGoogle Scholar
  26. Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and non-foggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111:D15217. CrossRefGoogle Scholar
  27. Gautam R, Hsu NC, Kafatos M, Tsay S-C (2007) Influences of winter haze on fog/low cloud over the Indo-Gangetic Plains. J Geophys Res 112:D05207. CrossRefGoogle Scholar
  28. Ghude SD, Chate DM, Jena C et al (2016) Premature mortality in India due to PM2.5 and ozone exposure. Geophys Res Lett 43:4650–4658CrossRefGoogle Scholar
  29. Ghude SD, Bhatt GS, Prabhakaran T, Jenamani RK, Chate DM, Safai PD, Karipot AK, Konwar M et al (2017) Winter fog experiment over the Indo-Gangetic plains of India. Curr Sci 112(4):767–784CrossRefGoogle Scholar
  30. Goel R, Guttikunda SK (2015) Role of urban growth, technology, and judicial interventions on vehicle exhaust emissions in Delhi for 1991–2014 and 2014–2030 periods. Environ Develop 14:6–21CrossRefGoogle Scholar
  31. Gupta S, Kumar K, Srivastava A, Srivastava A, Jain VK (2011) Size distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the atmospheric environment of Delhi, India. Sci Total Environ 409:4674–4680CrossRefGoogle Scholar
  32. Gustafsson O, Krusa M, Zencak Z, Sheesley RJ, Granat L, Engstrom E, Praveen PS, Rao PS, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323:495–498CrossRefGoogle Scholar
  33. Guttikunda SK, Calori G (2013) A GIS based emissions inventory at 1 km x 1 km spatial resolution for air pollution analysis in Delhi, India. Atmos Environ 67:101–111CrossRefGoogle Scholar
  34. Guttikunda SK, Goel R (2013) Health impacts of particulate pollution in a megacity—Delhi, India. Environ Dev 6:8–20CrossRefGoogle Scholar
  35. Habib G, Venkataraman C, Shrivastava M, Banerjee R, Stehr JW, Dickerson RR (2004) New methodology for estimating biofuel combustion for cooking: atmospheric emissions of black carbon and sulfur dioxide from India. Glob Biogeochem Cycles 18:GB3007. CrossRefGoogle Scholar
  36. Habib G, Venkataraman C, Bond TC, Schauer JJ (2008) Chemical, microphysical and optical properties of primary particles from the combustion of biomass fuels. Environ Sci Technol 42(23):8829–8834CrossRefGoogle Scholar
  37. Hoffer A, Gelencser A, Guyon P, Kiss G, Schmid O, Frank G, Artaxo P, Andreae MO (2006) Optical properties of humic like substances (HULIS) in biomass-burning aerosols. Atmos Chem Phys 6:3563–3570CrossRefGoogle Scholar
  38. Husain L, Dutkiewicz VA, Khan A, Ghauri BM (2007) Characterization of carbonaceous aerosols in urban air. Atmos Environ 41:6872–6883CrossRefGoogle Scholar
  39. Janssen, N.A., Gerlofs-Nijland, M.E., Lanki, T., Salonen, R.O., Cassee, F., Hoek, G., et al., 2012. Health Effects of Black Carbon. WHO Regional Office for Europe, Copenhagen ( health/airquality/publications/2012/health-effects-of-black-carbon. Accessed September 2016).Google Scholar
  40. Jaswal AK, Kumar N, Prasad AK, Kafatos M (2013) Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables. Nat Hazards.
  41. Jenamani RK (2007) Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi. Curr Sci 93:314–322Google Scholar
  42. Johansson LS, Leckner B, Gustavsson L, Cooper D, Tullin C, Potter A (2004) Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos Environ 38:4183–4195CrossRefGoogle Scholar
  43. Kalogridis A-C, Vratolis S, Liakakou E, Gerasopoulos E, Mihalopoulos N, Eleftheriadis K (2017) Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in Athens, Greece. Atmos Chem Phys Discuss.
  44. Kaskaoutis DG, Kharol SK, Sinha PR, Singh RP, Badarinath KVS, Mehdi W, Sharma M (2011) Contrasting aerosol trends over South Asia during the last decade based on MODIS observations. Atmos Measur Tech Discuss 4:5275–5323CrossRefGoogle Scholar
  45. Kaskaoutis DG, Kumar S, Sharma D, Singh RP, Kharol SK, Sharma M, Singh AK, Singh S, Singh A, Singh D (2014) Effects of crop residue burning on aerosol properties, plume characteristics and long-range transport over northern India. J Geophys Res 119:5424–5444Google Scholar
  46. Kim NT, Oanh T, Martel M, Pongkiatkul P, Berkowicz R (2008) Determination of fleet hourly emission and on-road vehicle emission factor using integrated monitoring and modeling approach. Atmos Res 89:223–232CrossRefGoogle Scholar
  47. Kirchstetter TW, Novakov T, Hobbs PV (2004) Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res 109:D21208. CrossRefGoogle Scholar
  48. Komppula M, Mielonen T, Arola A, Korhonen K, Lihavainen H, Hyvärinen A-P, Baars H, Engelmann R, Althausen D, Ansmann A, Müller D, Panwar TS, Hooda RK, Sharma VP, Kerminen V-M, Lehtinen KEJ, Viisanen Y (2012) One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India: seasonal characteristics of the aerosol vertical structure. Atmos Chem Phys 12:4513–4524CrossRefGoogle Scholar
  49. Koyuncu T, Pinar Y (2007) The emissions from a space-heating biomass stove. Biomass Bioenergy 31:73–79CrossRefGoogle Scholar
  50. Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10:11017–11096CrossRefGoogle Scholar
  51. Lee J, Yun J, Kim KJ (2016) Monitoring of black carbon concentration at an inland rural area including fixed sources in Korea. Chemosphere 143:3–9CrossRefGoogle Scholar
  52. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864CrossRefGoogle Scholar
  53. Mahata KS, Panday AK, Rupakheti M, Singh A, Naja M, Lawrence MG (2017) Seasonal and diurnal variations of methane and carbon 1 dioxide in the Kathmandu Valley in the foothills of the central Himalaya. Atmos Chem Phys Discuss.
  54. Maithel S, Lalchandani D, Malhotra G, Bhanware P, Uma R, Ragavan S, Athalye V, Bindiya KR, Reddy S, Bond T, Weyant C, Baum E, Thoa VTK, Phuong NT, Thanh TK (2012) Brick kilns performance assessment. Greentech, New Delhi, India, p 164Google Scholar
  55. Misra A, Tripathi SN, Kaul D, Welton EJ (2012) Study of MPLNET derived aerosol climatology over Kanpur, India, and validation of CALIPSO Level 2 Version 3 Backscatter and extinction products. J Atmos Ocean Technol 29:1285–1294CrossRefGoogle Scholar
  56. Monkkonen P, Uma R, Srinivasan D, Koponen IK, Lehtinen KEJ, Hameri K, Suresh R, Sharma VP, Kulmala M (2004) Relationship and variations of aerosol number and PM10 mass concentrations in a highly polluted urban environment: New Delhi, India. Atmos Environ 38:425–433CrossRefGoogle Scholar
  57. Nair VS, Moorthy KK, Alappattu DP, Kunhikrishnan PK, George S, Nair PR, Babu SS, Abish B, Satheesh SK, Tripathi SN, Niranjan K, Madhavan BL, Srikant V, Dutt CBS, Badarinath KVS, Reddy RR (2007) Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): impacts of local boundary layer processes and long-range transport. J Geophys Res 112.
  58. Nakayama T, Suzuki H, Kagamitani S, Ikeda Y (2015) Characterization of a three wavelength Photoacoustic Soot Spectrometer (PASS-3) and a Photoacoustic Extinctiometer (PAX). J Meteorol Soc Japan 93:285–308CrossRefGoogle Scholar
  59. Panopoulou A, Liakakou E, Gros V, Sauvage S, Locoge N, Bonsang B, Psiloglou BE, Gerasopoulos E, Mihalopoulos N (2017) Non methane hydrocarbons variability in Athens during wintertime: the role of traffic and heating. Atmos Chem Phys Discuss.
  60. Pant P, Shukla A, Kohl SD, Chow JC, Watson GJ, Harrison RM (2015) Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmos Environ 109:178–189CrossRefGoogle Scholar
  61. Pipal AS, Tiwari S, Satsangi PG, Taneja A, Bisth DS, Srivastava AK, Srivastava MK (2014) Sources and characteristics of carbonaceous aerosols at Agra “World heritage site” and Delhi “capital city of India”. Environ Sci Pol Res 21(14):8678–8691CrossRefGoogle Scholar
  62. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: Lines that connect. J Air Waste Manage Assoc 56:709–742CrossRefGoogle Scholar
  63. Rajesh TA, Ramachandran S (2017) Characteristics and source apportionment of black carbon aerosols over an urban site. Environ Sci Poll Res.
  64. Rajput P, Sarin M, Sharma D, Singh D (2014) Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. Tellus B 66:21026. CrossRefGoogle Scholar
  65. Rajput P, Singh DK, Singh AK, Gupta T (2018) Chemical composition and source-apportionment of sub-micron particles during wintertime over Northern India: new insights on influence of fog-processing. Environ Pollut 233:81–91CrossRefGoogle Scholar
  66. Ram K, Sarin MM, Tripathi SN (2010) A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: Characterization, sources, and temporal variability. J Geophys Res 115.
  67. Ram K, Sarin MM, Tripathi SN (2012) Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. Environ Sci Technol 46:686–695CrossRefGoogle Scholar
  68. Rastogi N, Singh A, Sarin MM, Singh D (2016) Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions. Atmos Environ 125:396–403CrossRefGoogle Scholar
  69. Reche C, Viana M, Amato F, Alastuey A, Moreno T, Hillamo R, Teinila K, Saarnio K, Seco R, Penuelas J, Mohr C, Prévôt ASH, Querol X (2012) Biomass burning contributions to urban aerosols in a coastal Mediterranean City. Sci Total Environ 427-428:175–190CrossRefGoogle Scholar
  70. Rehman IH, Ahmed T, Praveen PS, Kar A, Ramanathan V (2011) Black carbon emissions from biomass and fossil fuels in rural India. Atmos Chem Phys 11:7289–7299CrossRefGoogle Scholar
  71. Sandradewi J, Prevot ASH, Szidat S, Perron N, Alfarra MR, Lanz VA, Weingartner E, Baltensperger U (2008) Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ Sci Technol 42(9):3316–3323CrossRefGoogle Scholar
  72. Sarkar S, Chokngamwong R, Cervone G, Singh RP, Kafatos M (2006) Variability of aerosol optical depth and aerosol forcing over India. Adv Space Res 37:2153–2159CrossRefGoogle Scholar
  73. Sarkar C, Sinha V, Sinha B, Panday AK, Rupakheti M, Lawrence MG (2017) Source apportionment of NMVOCs in the Kathmandu Valley during the SusKat-ABC international field campaign using positive matrix factorization. Atmos Chem Phys 17:8129–8156CrossRefGoogle Scholar
  74. Schnell JL, Naik V, Horowitz LW, Paulot F, Mao J, Ginoux P, Zhao M, Ram K (2018) Exploring the relationship between surface PM2.5 and meteorology in Northern India. Atmos Chem Phys Discuss.
  75. Sciare J, D'Argouges O, Sarda-Esteve R, Gaimoz C, Dolgorouky C, Bonnaire N, Favez O, Bonsang B, Gros V (2011) Large contribution of water-insoluble secondary organic aerosols in the region of Paris (France) during wintertime. J Geophys Res 116:D22203. CrossRefGoogle Scholar
  76. Seibert P et al (1994) Trajectory analysis of aerosol measurements at high alpine sites. In: Borrell PM, Cvitas T, Seiler W (eds) Transport and Transformation of Pollutants in the Troposphere: Proceedings of EUROTRAC Symposium '94. SPB Acad. Publ., Hague, pp 689–693Google Scholar
  77. Sharma SK, Mandal TK (2017) Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment. Urban Climate 21:106–122CrossRefGoogle Scholar
  78. Sharma SK, Sharma A, Saxena M, Choudhary N, Masiwal R, Mandal TK, Sharma C (2016) Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi. India Atmos Poll Res 7:110–121CrossRefGoogle Scholar
  79. Sharma SK, Agarwal P, Mandal TK, Karapurkar SG, Shenoy DM, Peshin SK, Gupta A, Saxena M, Jain S, Sharma A, Saraswati (2017) Study on ambient air quality of megacity Delhi, India during odd–even strategy. MAPAN 32(2):155–165CrossRefGoogle Scholar
  80. Singh N, Mhawish A, Deboudt K, Singh RS, Banerjee T (2017) Organic aerosols over Indo-Gangetic Plain: sources, distributions and climatic implications. Atmos Environ 157:59–74CrossRefGoogle Scholar
  81. Singh N, Banerjee T, Raju MP, Deboudt K, Sorek-Hamer M, Singh RS, Mall RK (2018) Aerosol chemistry, transport, and climatic implications during extreme biomass burning emissions over the Indo-Gangetic Plain. Atmos Chem Phys 18:14197–14215CrossRefGoogle Scholar
  82. SoE-Delhi (2012) State of the environment report for the national capital region of Delhi. Government of Delhi, IndiaGoogle Scholar
  83. Stockwell CE, Christian TJ, Goetz JD, Jayarathne T, Bhave PV, Praveen PS, Adhikari S, Maharjan R, DeCarlo PF, Stone EA, Saikawa E, Blake DR, Simpson IJ, Yokelson RJ, Panday AK (2016) Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmos Chem Phys 16:11043–11081CrossRefGoogle Scholar
  84. Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21:65–66CrossRefGoogle Scholar
  85. Syed FS, Kornich H, Tjernstrom M (2012) On the fog variability over South Asia. Clim Dyn 39:2993–3005CrossRefGoogle Scholar
  86. Tang M, Alexander JM, Kwon D, Estillore AD, Laskina O, Young MA, Kleiber PD, Grassian VH (2016) Optical and physicochemical properties of brown carbon aerosol: light scattering, FTIR extinction spectroscopy, and hygroscopic growth. J Phys Chem A 120:4155–4166CrossRefGoogle Scholar
  87. Titos G, del Águila A, Cazorla A, Lyamani H, Casquero-Vera JA, Colombi C, Cuccia E, Gianelle V, Močnik G, Alastuey A, Olmo FJ, Alados-Arboledas L (2017) Spatial and temporal variability of carbonaceous aerosols: assessing the impact of biomass burning in the urban environment. Sci Total Environ 578:613–625CrossRefGoogle Scholar
  88. Tiwari S, Srivastava AK, Bisht DS, Parmita P, Srivastava MK, Attri SD (2013a) Diurnal and seasonal variation of black carbon and PM2.5 over New Delhi, India: influence of meteorology. Atmos Res 125-126:50–62CrossRefGoogle Scholar
  89. Tiwari S, Srivastava AK, Bisht DS, Safai PD, Parmita P (2013b) Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability. Nat Hazards 65:1745–1764CrossRefGoogle Scholar
  90. Tiwari S, Pandithurai G, Attri SD, Srivastava AK, Soni VK, Bisht DS, Anil Kumar V, Srivastava MK (2015a) Aerosol optical properties and their relationship with meteorological parameters during wintertime in Delhi, India. Atmos Res 153:465–479CrossRefGoogle Scholar
  91. Tiwari S, Pipal AS, Srivastava AK, Bisht DS, Pandithurai G (2015b) Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique. Environ Sci Pollut Res 22(4):2846–2855CrossRefGoogle Scholar
  92. Tiwari S, Dumka UC, Kaskaoutis DG, Ram K, Panicker AS, Srivastava MK, Tiwari S, Attri SD, Soni VK, Pandey AK (2016) Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain. Atmos Environ 125:437–449CrossRefGoogle Scholar
  93. Tiwari S, Dumka UC, Gautam AS, Kaskaoutis DG, Srivastava AK, Bisht DS, Chakrabarty RK, Sumlin BJ, Solmon F (2017) Assessment of PM2.5 and PM10 over Guwahati in Brahmaputra River Valley: temporal evolution, source apportionment and meteorological dependence. Atmos Poll Res 8(1):13–28CrossRefGoogle Scholar
  94. Uria-Tellaetxe I, Carslaw DC (2014) Conditional bivariate probability function for source identification. Environ Model Softw 59:1–9CrossRefGoogle Scholar
  95. Vaishya A, Singh P, Rastogi S, Babu SS (2017) Aerosol black carbon quantification in the central Indo-Gangetic Plain: seasonal heterogeneity and source apportionment. Atmos Res 185:13–21CrossRefGoogle Scholar
  96. Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate Impacts. Science 307(5714):1454–1456CrossRefGoogle Scholar
  97. Wan X, Kang S, Li Q, Rupakheti D, Zhang Q, Guo J, Chen P, Tripathee L, Rupakheti M, Panday AK, Wang W, Kawamura K, Gao S, Wu G, Cong Z (2017) Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmos Chem Phys 17:8867–8885CrossRefGoogle Scholar
  98. Xu J, Tao J, Zhang R, Cheng T, Leng C, Chen J, Huang G, Li X, Zhu Z (2012) Measurements of surface aerosol optical properties in winter of Shanghai. Atmos Res 109–110:25–35CrossRefGoogle Scholar
  99. Zhang Y-L, Huang R-J, El Haddad I, Ho K-F, Cao J-J, Han Y, Zotter P, Bozzetti C, Daellenbach KR, Canonaco F, Slowik JG, Salazar G, Schwikowski M, Schnelle-Kreis J, Abbaszade G, Zimmermann R, Baltensperger U, Prévôt ASH, Szidat S (2015) Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos Chem Phys 15:1299–1312CrossRefGoogle Scholar
  100. Zheng W, Zhou Y, Gu H, Tian Z (2017) Seasonal dynamics and impact factors of urban forest CO2 concentration in Harbin, China. J Forestry Res 28:125–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aryabhatta Research Institute of Observational SciencesNainitalIndia
  2. 2.Indian Institute of Tropical Meteorology, New Delhi BranchNew DelhiIndia
  3. 3.Institute for Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  4. 4.Indian Metrological DepartmentNew DelhiIndia
  5. 5.Indian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations