Advertisement

Tacking the vector of Xylella fastidiosa: geo-statistical analysis of long-term field observations on host plants influencing the distribution of Phylaenus spumarius nymphs

  • Arianna Latini
  • Cipriano Foxi
  • Flavio Borfecchia
  • Andrea Lentini
  • Luigi De Cecco
  • Domenico Iantosca
  • Mauro Serafini
  • Ugo Laneri
  • Marco Citterio
  • Alessandro Campiotti
  • Giovanni BenelliEmail author
  • Susanna Mariani
Research Article

Abstract

The meadow froghopper, Philaenus spumarius L., is endemic in Italy and was not considered a harmful species until 2014, when the olive quick decline syndrome (OQDS) showed up in Apulia (southern Italy). It was immediately suspected and then verified as the main vector of Xylella fastidiosa, the bacterium responsible for the disease. Currently, EU Directives consider the fight against P. spumarius compulsory in member states and recommend Integrated Pest Management (IPM), both in uncultivated and cultivated infested areas, to minimise the environmental impact of chemical pesticides. This should be based on an improved knowledge of the vector with its seasonal trends and feeding habits linked to specific herbaceous species. In this context, our field study was aimed to improve the understanding of the vector nutritional behaviour, especially at its critical nymph stage, by monitoring its presence on different herbaceous target species, using its typical feeding foams as key indicator. The study area was in Lazio region (central Italy), dedicated to olive growing and still unaffected by the X. fastidiosa plague. Over two years, during the nymph development period, field data have been acquired over the test area and then analysed by coupling statistical (ANOVA), geographical information system (GIS) and geo-referenced field sampling approaches. Results highlighted that P. spumarius exhibits significant preferences for specific herbaceous plants, especially at its early development stages, detectable by tenuous spittle. This indicates female oviposition activity, which seems also not influenced by olive tree proximity. Furthermore, the non-host plant species identified here could be suitable for creating green barriers for limiting the vector diffusion to contiguous areas where sensible plantations are growing. In the final section, applied implications arising from the present findings for P. spumarius population management are discussed.

Keywords

Meadow spittlebug Olive quick decline syndrome (OQDS) Hemiptera Aphrophoridae Host preference Georeferenced sampling schema Geographical information system (GIS) 

Notes

Acknowledgments

We are grateful to Prof. Philippe Garrigues for inviting this contribution on Environmental Science and Pollution Research. Three anonymous reviewers kindly improved an earlier version of our manuscript. The authors wish to thank the Direction of ENEA Casaccia Research Centre for its availability and collaboration in the current study. We are grateful to Dr. Irene Mantovani and Dr. Carmela Mastrota, students from “La Sapienza” University of Rome, for field assistance during their bachelor thesis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11356_2018_3870_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1.07 mb)

References

  1. Al-Kindi KM, Kwan P, Andrew NR, Welch M (2017) Remote sensing and spatial statistical techniques for modelling of Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities. PeerJ 5:e3752.  https://doi.org/10.7717/peerj.3752 CrossRefGoogle Scholar
  2. Bassi R, Morelli G, Salamini F (2016) Rapporto Xylella. 23 giugno 2016. Accademia Nazionale dei Lincei. http://www.lincei.it/files/documenti/Rapporto_xylella_20160622.pdf
  3. Berlese A (1915) Entomologia agraria. Manuale sugli insetti nocivi alle piante coltivate, campestri, ortensi e loro prodotti e modo di combatterli. Tipografia Ricci M, Firenze, ItaliaGoogle Scholar
  4. Biedermann R (2002) Leafhoppers (Hemiptera, Auchenorrhyncha) in fragmented habitats. Denisia 176:523–530Google Scholar
  5. Black MC, Kamas JS (2007) Assays of Texas vineyard soils for effects on Pierce’s disease of grape. Proceedings, 2007 Pierce’s Disease Research Symposium. California Department of Food and Agriculture, Sacramento, CA. pp 228Google Scholar
  6. Bodino N, Plazio E, Picciau L, Cavalieri V, Dongiovanni E, Di Carolo M, Tauro D, Volani S, Salerno M, Russo V, Porcelli F, Gilioli G, Bosco D (2017) Phenology population dynamics and host plants of Philaenus spumarius in Italian olive groves. Proceedings of European Conference on Xylella fastidiosa: finding answers to a global problem. 13–15 November 2017, Palma de Mallorca, Spain.  https://doi.org/10.5281/zenodo.1065678
  7. Borfecchia F, Micheli C, Carli F, De Martis SC, Gnisci V, Piermattei V, Belmonte A, De Cecco L, Martini S, Marcelli M (2013) Mapping spatial patterns of Posidonia oceanica meadows by means of Daedalus ATM airborne sensor in the coastal area of Civitavecchia (Central Tyrrhenian Sea, Italy). Remote Sens 5:4877–4899.  https://doi.org/10.3390/rs5104877 CrossRefGoogle Scholar
  8. Borfecchia F, De Cecco L, Martini S, Giordano L, Trotta C, Masci D, Di Gioia V, Pignatelli V, Micheli C, Moreno A, Taraglio S, Nanni V, Moriconi CL, Mancini S, Pizzuti A, Picciucco P (2015) Integrated aero v space technologies in precision agriculture support. Energia Ambiente e Innovazione 61:32–35 ISSN 1124–0016Google Scholar
  9. Bosso L, Russo D, Di Febbraro M, Cristinzio G, Zoina A (2016) Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathol Mediterr [Sl] 55:62–72.  https://doi.org/10.14601/Phytopathol_Mediterr-16429 CrossRefGoogle Scholar
  10. Bragard C (2016) Risk assessment of X. fastidiosa in the EU territory and other EFSA activities. In FAO-IPPC-CIHEAM International Workshop on Xylella fastidiosa & the Olive Quick Decline Syndrome (OQDS). 19–22 April 2016. CIHEAM/Istituto Agronomico Mediterraneo of Bari, Valenzano, ItalyGoogle Scholar
  11. Cornara D, Cavalieri V, Dongiovanni C, Altamura G, Palmisano F, Bosco D, Porcelli F, Almeida RPP, Saponari M (2017a) Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J Appl Entomol 141:80–87.  https://doi.org/10.1111/jen.12365 CrossRefGoogle Scholar
  12. Cornara D, Saponari M, Zeilinger AR, de Stradis A, Boscia D, Loconsole G, Bosco D, Martelli GP, Almeida RPP, Porcelli F (2017b) Spittlebugs as vector of Xylella fastidiosa in olive orchards in Italy. J Pest Sci 90:521–530.  https://doi.org/10.1007/s10340-016-0793-0 CrossRefGoogle Scholar
  13. Cornara D, Bosco D, Fereres A (2018) Philaenus spumarius: when an old acquaintance becomes a new threat to European agriculture. J Pest Sci 91:957–972.  https://doi.org/10.1007/s10340-018-0966-0 CrossRefGoogle Scholar
  14. Cruaud A, Gonzalez AA, Godefroid M, Nidelet S, Streito JC, Thuillier JM, Rossi JM, Santoni S, Rasplus JI (2018) Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: a case study in Corsica. bioRxiv.  https://doi.org/10.1101/241513
  15. Del Bianco A, Czwienczek E, Kozelska S, Kaluski T, Baù A, Guajardo IM, Stancanelli G, Tramontini S (2017) A global database on the host plants of Xylella spp. Proceedings of European Conference on Xylella fastidiosa: finding answers to a global problem. 13–15 November 2017, Palma de Mallorca, Spain. https://www.efsa.europa.eu/sites/default/files/event/171113/171113-3.5_Delbianco.pdf
  16. Donald RK (1952) The ecology of the meadow spittlebug Philaenus leucophthalmus L. Family Cercofidae. Dissertation. The Ohio State UniversityGoogle Scholar
  17. Dongiovanni C, Cavalieri V, Bodino N, Tauro D, Di Carolo M, Altamura G, Fumarola G, Ciniero A, Lasorella C, Bosco D, Saponari M (2017) Host-plant preference of Philaenus spumarius nymphs in olive orchards of the Apulia Region of Italy. Proceedings of European Conference on Xylella fastidiosa: finding answers to a global problem. 13–15 November 2017, Palma de Mallorca, Spain.  https://doi.org/10.5281/zenodo.1065678
  18. Dongiovanni C, Cavalieri V, Bodino N, Tauro D, Di Carolo M, Fumarola G, Altamura G, Lasorella C, Bosco D (2018) Plant selection and population trend of spittlebug immatures (Hemiptera: Aphrophoridae) in olive groves of the Apulia Region of Italy. J Econ Entomol.  https://doi.org/10.1093/jee/toy289
  19. EFSA, European Food Safety Authority (2016) Scientific report on the update of a database of host plants of Xylella fastidiosa: 20 November 2015. EFSA J 14:4450.  https://doi.org/10.2903/j.efsa.2016.4378 CrossRefGoogle Scholar
  20. EFSA, European Food Safety Authority (PLH) Panel on Plant Health (2015) Scientific opinion on the risk to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J 13:3989.  https://doi.org/10.2903/j.efsa.2015.3989 CrossRefGoogle Scholar
  21. EU, Commission Database of Host Plants Found To Be Susceptible To Xylella fastidiosa In The Union Territory—Update 9 (2017) European Commission Directorate-General For Health And Food Safety. 17 July 2017, Brussels. https://ec.europa.eu/food/sites/food/files/plant/docs/ph_biosec_legis_emergency_db-host-plants_update09.pdf
  22. EU, Commission Implementing Decision (2015) 2015/789 of 18 May 2015 as regards measures to prevent the introduction into and the spread within the Union of Xylella fastidiosa (Wells et al.) (notified under document C (2015) 3415) http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015D0789&from=EN
  23. Germinara GS, Ganassi S, Pistillo MO, Di Domenico C, De Cristofaro A, Di Palma AM (2017) Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs). PLoS One 12:e0190454.  https://doi.org/10.1371/journal.pone.0190454 CrossRefGoogle Scholar
  24. Gualano S, Tarantino E, Santoro F, Valentini F, Dongiovanni N, D’Onghia AM (2014) Analisi assistita da immagini aeree ad elevata risoluzione geometrica per il riconoscimento del Complesso del Disseccamento Rapido dell’Olivo associato al batterio Xylella fastidiosa in Puglia. Federazione Italiana delle Associazioni Scientifiche per le Informazioni Territoriali e Ambientali (ASITA). 14–16 October 2014, Firenze, Italy. ISBN 978-88-903132-9-5 http://atti.asita.it/ASITA2014/Pdf/097.pdf
  25. Holzinger WE, Kammerlander I, Nickel H (2003) The Auchenorrhyncha of Central Europe—die Zikaden Mitteleuropas. Vol. 1: Fulgoromorpha, Cicadomorpha excl. Cicadellidae. Brill Academic Publishers, Leiden ISSN 1570–775XGoogle Scholar
  26. Janse JD, Obradovic A (2010) Xylella fastidiosa: its biology, diagnosis, control and risks. J Plant Pathol 92(1, Supplement):S1.35–SS148.  https://doi.org/10.4454/jpp.v92i1sup.2504 CrossRefGoogle Scholar
  27. Lundgren JG, Fergen JK, Walter EC (2008) The influence of plant anatomy on oviposition and reproductive success of the omnivorous bug Orius insidiosus. Anim Behav 75:1495–1502.  https://doi.org/10.1016/j.anbehav.2007.09.029 CrossRefGoogle Scholar
  28. Malone M, Watson R, Pritchard J (1999) The spittlebug Philaenus spumarius feeds from mature xylem at the full hydraulic tension of the transpiration stream. New Phytol 143:261–271.  https://doi.org/10.1046/j.1469-8137.1999.00448.x CrossRefGoogle Scholar
  29. Patt JM, Sétamou M (2010) Recognition of novel volatile cues by the nymphs of the glassy-winged sharpshooter, Homalodisca vitripennis (Cicadellidae). J Insect Behav 23:290–302.  https://doi.org/10.1007/s10905-010-9214-z CrossRefGoogle Scholar
  30. PD/GWSS Fact Sheet - Creating green sharpshooter barriers to stop the spread of PD (2012) California Department of Food & Agriculture. Retrieved from: http://pdgwss.net/wp-content/uploads/2012/08/PD-Fact-Sheet_-_Creating-Green-Sharpshooter-Barriers-to-Stop-the-Spread-of-PD_final2.pdf
  31. Ranieri E, Ruschioni S, Riolo P, Isidoro N, Romani R (2016) Fine structure of antennal sensilla of the spittlebug Philaenus spumarius L. (Insecta: Hemiptera: Aphrophoridae). I. Chemoreceptors and thermo−/hygroreceptors. Arthropod Struct Dev 45:432–439.  https://doi.org/10.1016/j.asd.2016.09.005 CrossRefGoogle Scholar
  32. Regione Puglia (2016) Misure fitosanitarie da attuare per l’eradicazione ed il contenimento della diffusione di Xylella fastidiosa subspecie pauca ceppo CoDiRO. Dipartimento Agricoltura Sviluppo Rurale e Ambiente. Sezione Osservatorio Fitosanitario. http://www.regione.puglia.it/documents/10192/8172530/Delibera+-+1708+2016+-+documento+3.pdf
  33. Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J Plant Pathol 95:659–668.  https://doi.org/10.4454/JPP.V95I3.035 CrossRefGoogle Scholar
  34. Saponari M, Loconsole G, Cornara D, Yokomi RK, De Stradis A, Boscia D, Martelli PG, Krugner R, Porcelli F (2014) Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J Econ Entomol 107:1316–1319.  https://doi.org/10.1603/EC14142 CrossRefGoogle Scholar
  35. Servadei A, Zangheri S, Masutti L (1972) Entomologia Generale ed Applicata. CEDAM Padova, ItaliaGoogle Scholar
  36. Silletti G (2015) Piano Degli Interventi, Art 1 c. 4 dell’OCDPC 225/2015. Bari, 16 marzo 2015. Corpo Forestale dello Stato, Comando Regionale per la Puglia. Commissario Delegato: Giuseppe Silletti. http://cartografia.sit.puglia.it/doc/Piano_operativo_Xylella_approvato%2018_03_2015.pdf
  37. Tscharntke T, Karp DS, Chaplin-Krame R, Batáry P, DeClerk F, Gratton C, Hunt L, Ives A, Jonsson M, Larsen A, Martin EA, Martínez-Salinas A, Meehan TD, O’Rourke M, Poveda K, Rosenheim JA, Rush A, Schellhorn N, Wanger TC, Wratten S, Zhang W (2016) When natural habitat fails to enhance biological pest control—five hypotheses. Biol Conserv 204:449–458.  https://doi.org/10.1016/j.biocon.2016.10.001 CrossRefGoogle Scholar
  38. Valentini F, Ben Moussa IE, Mazzoni V, Speranza S, Lorusso D, Digiaro M, Varvaro L, D’Onghia AM (2017) Seasonal distribution of Philaenus spumarius and Neophilaenus campestris in Apulian olives groves. In: Proceedings of European Conference on Xylella fastidiosa: finding answers to a global problem, 13–15 November 2017, Palma de Mallorca, SpainGoogle Scholar
  39. Weaver CR, King DR (1954) Meadow spittlebug. Philaenus leucophtalmus (L.) Research Bulletin, 741. Ohio Agricultural Experimental Station, WoosterGoogle Scholar
  40. Wells JM, Raju BC, Hung HY, Weisburg WG, Mandelco-Paul L, Brenner DJ (1987) Xylella fastidiosa gen. nov., sp. nov.: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37:136–143.  https://doi.org/10.1099/00207713-37-2-136 CrossRefGoogle Scholar
  41. Yurtsever S (2000) On the polynmorphic meadow spittlebug, Philaenus spumarius (L.) (Homoptera: Cercopidae). Turk J Zool 24:447–459Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Arianna Latini
    • 1
  • Cipriano Foxi
    • 2
  • Flavio Borfecchia
    • 3
  • Andrea Lentini
    • 2
  • Luigi De Cecco
    • 3
  • Domenico Iantosca
    • 3
  • Mauro Serafini
    • 4
  • Ugo Laneri
    • 3
  • Marco Citterio
    • 5
  • Alessandro Campiotti
    • 1
  • Giovanni Benelli
    • 6
    Email author return OK on get
  • Susanna Mariani
    • 1
  1. 1.DUEE, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentENEA Casaccia Research CentreRomeItaly
  2. 2.Department of Agriculture, Section of Plant Pathology and EntomologyUniversity of SassariSassariItaly
  3. 3.SSPT-PROTER-OAC, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentENEA Casaccia Research CentreRomeItaly
  4. 4.Department of Environmental BiologyUniversity “La Sapienza”RomeItaly
  5. 5.ISER, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentENEA Casaccia Research CentreRomeItaly
  6. 6.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations