Advertisement

Cytotoxic and genotoxic effect of oxyfluorfen on hemocytes of Biomphalaria glabrata

  • Maíra de Vasconcelos Lima
  • Williams Nascimento de Siqueira
  • Hianna Arely Milca Fagundes Silva
  • José de Melo Lima Filho
  • Elvis Joacir de França
  • Ana Maria Mendonça de Albuquerque Melo
Research Article
  • 45 Downloads

Abstract

Chemicals released from anthropogenic activities such as industry and agriculture often end up in aquatic ecosystems. These substances can cause serious damage to these ecosystems, thus threatening the conservation of biodiversity. Among these substances are pesticides, such as oxyfluorfen, a herbicide used for the control of grasses and weeds. Considering its widespread use, it is important to investigate the possible toxicity of this compound to aquatic organisms, especially invertebrates. Hence, the use of biological systems able to detect such effects is of great importance. The mollusk Biomphalaria glabrata has been shown to be useful as an environmental indicator to assess the potential ecological effects of physical and chemical stressors in freshwater environments. The present study sought to detect mutagenic changes in hemocytes of B. glabrata exposed to oxyfluorfen. To perform these tests, this study used ten animals per group, exposed acutely (48 h) and chronically (15 days) to oxyfluorfen. The herbicide concentrations were 0.125, 0.25, and 0.5 mg/L. The results showed that oxyfluorfen induced significant frequencies of micronuclei, binucleated cells, and apoptosis in hemocytes of mollusks when compared to the control group. Unlike chronic exposure, acute exposure was dose-dependent. The present study’s results demonstrate the cytotoxic and genotoxic effects of oxyfluorfen on hemocytes of B. glabrata.

Keywords

Biomphalaria glabrata Genotoxic Hemocyte Herbicide Mollusk Oxyfluorfen 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arcaute CR, Soloneski S, Larramendy ML (2016) Toxic and genotoxic effects of the 2, 4-dichlorophenoxyacetic acid (2, 4-D)-based herbicide on the neotropical fish Cnesterodon decemmaculatus. Ecotoxicol Environ Saf 128:222–229.  https://doi.org/10.1016/j.ecoenv.2016.02.027 CrossRefGoogle Scholar
  2. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44.  https://doi.org/10.1016/S0002-9343(00)00481-2 CrossRefGoogle Scholar
  3. Baršienė J, Šyvokienė J, Bjornstad A (2006) Induction of micronuclei and other nuclear abnormalities in mussels exposed to bisphenol A, diallyl phthalate and tetrabromodiphenyl ether-47. Aquat Toxicol 78:105–108.  https://doi.org/10.1016/j.aquatox.2006.02.023 CrossRefGoogle Scholar
  4. Bianchi J, Cabral-de-Mello DC, Marin-Morales MA (2015) Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. Ecotoxicol Environ Saf 120:174–183.  https://doi.org/10.1016/j.ecoenv.2015.05.040 CrossRefGoogle Scholar
  5. Bianchi J, Fernandes TCC, Marin-Morales MA (2016) Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere 144:475–483.  https://doi.org/10.1016/j.chemosphere.2015.09.021 CrossRefGoogle Scholar
  6. Binelli A, Riva C, Cogni D, Provini A (2008) Assessment of the genotoxic potential of benzo (a) pyrene and pp′-dichlorodiphenyldichloroethylene in Zebra mussel (Dreissena polymorpha). Mutat Res-Genet Tox En 649:135–145.  https://doi.org/10.1016/j.mrgentox.2007.08.011 CrossRefGoogle Scholar
  7. Bolognesi C, Perrone E, Roggieri E, Pampanin DM, Sciutto A (2006) Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquat Toxic 78:93–98.  https://doi.org/10.1016/j.aquatox.2006.02.015 CrossRefGoogle Scholar
  8. Bonfanti P, Saibene M, Bacchetta R, Mantecca P, Colombo A (2018) A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis. Aquat Toxicol 195:103–113.  https://doi.org/10.1016/j.aquatox.2017.12.007 CrossRefGoogle Scholar
  9. Brendler-Schwaab S, Hartmann A, Pfuhler S, Speit G (2005) The in vivo comet assay: use and status in genotoxicity testing. Mutagenesis 20:245–54.  https://doi.org/10.1093/mutage/gei033
  10. Cavas T, Garanko NN, Arkhipchuk VV (2005) Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate. Food Chem Toxicol 43:569–574.  https://doi.org/10.1016/j.fct.2004.12.014 CrossRefGoogle Scholar
  11. Coleman S, Linderman R, Hodgson E, Rose RL (2000) Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ Health Persp 108:1151–1157Google Scholar
  12. Dalton TP, Puga A, Shertzer HG (2002) Induction of cellular oxidative stress by aryl hydrocarbon receptor activation. Chem-Biol Interact 141:77–95.  https://doi.org/10.1016/S0009-2797(02)00067-4 CrossRefGoogle Scholar
  13. Devos A, Dallas LJ, Voiseux C, Lecomte-Pradines C, Jha AN, Fiévet B (2015) Assessment of growth, genotoxic responses and expression of stress related genes in the Pacific oyster Crassostrea gigas following chronic exposure to ionizing radiation. Mar Pollut Bull 95:688–698.  https://doi.org/10.1016/j.marpolbul.2015.03.039 CrossRefGoogle Scholar
  14. Dragoeva A, Koleva V, Hasanova N, Slanev S (2012) Cytotoxic and genotoxic effects of diphenyl-ether herbicide GOAL (oxyfluorfen) using the Allium cepa test. Res J Mut 2:1–9.  https://doi.org/10.3923/rjmutag.2012.1.9 CrossRefGoogle Scholar
  15. Druart C, Gimbert F, Scheifler R, Vaufleury A (2017) A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption. Environ Pollut 226:240–249.  https://doi.org/10.1016/j.envpol.2017.03.061 CrossRefGoogle Scholar
  16. Estevam EC, Nakano E, Kawano T, Pereira CAB, Amancio FF, Melo AMMA (2006) Dominant lethal effects of 2,4-D in Biomphalaria glabrata. Mutat Res 611:83–88.  https://doi.org/10.1016/j.mrgentox.2006.07.001 CrossRefGoogle Scholar
  17. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res Genet Toxicol Environ Mutagen 534:65–75.  https://doi.org/10.1016/S1383-5718(02)00249-8 CrossRefGoogle Scholar
  18. Glinski DA, Purucker ST, Van Meter RJ, Black MC, Henderson WM (2018) Analysis of pesticides in surface water, stem flow, and through fall in an agricultural area in South Georgia, USA. Chemosphere 209:496–507.  https://doi.org/10.1016/j.chemosphere.2018.06.116 CrossRefGoogle Scholar
  19. Hassanein HMA (2006) Toxicological effects of the herbicide oxyfluorfen on acetylcholinesterase in two fish species: Oreochromis niloticus and Gambusia affinis. J Environ Sci Health A Tox Hazard Subst Environ Eng 37:521–527.  https://doi.org/10.1081/ESE-120003233 CrossRefGoogle Scholar
  20. Hayashi MT, Karlseder J (2013) DNA damage associated with mitosis and cytokinesis failure. Oncogene 32:4593–4601.  https://doi.org/10.1038/onc.2012.615 CrossRefGoogle Scholar
  21. He Q, Wang X, Sun P, Wang Z, Wang L (2015) Acute and chronic toxicity of tetrabromobisphenol A to three aquatic species under different pH conditions. Aquat Toxicol 164:145–154.  https://doi.org/10.1016/j.aquatox.2015.05.005 CrossRefGoogle Scholar
  22. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776.  https://doi.org/10.1038/35037710 CrossRefGoogle Scholar
  23. Kovács R, Csenki Z, Bakos K, Urbányi B, Horváth Á, Garaj-Vrhovac V, Gajski G, Gerić M, Negreira N, Alda ML, Barceló D, Heath E, Kosjek T, Žegura B, Novak M, Zajc I, Baebler Š, Rotter A, Ramšak Ž, Filipič M (2015) Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study. Water Res 77:201–212.  https://doi.org/10.1016/j.watres.2015.03.025 CrossRefGoogle Scholar
  24. Laganà A, Fago G, Fasciani L, Marino A, Mosso M (2000) Determination of diphenyl-ether herbicides and metabolites in natural waters using high-performance liquid chromatography with diode array tandem mass spectrometric detection. Anal Chim Acta 414:79–94.  https://doi.org/10.1016/S0003-2670(00)00813-8 CrossRefGoogle Scholar
  25. Leusch FDL, Khan SJ, Laingam S, Prochazka E, Froscio S, Trinh T, Chapman HF, Humpage A (2014) Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water. Water Res 49:300–315.  https://doi.org/10.1016/j.watres.2013.11.030 CrossRefGoogle Scholar
  26. Llorente MT, Parra JM, Sánchez-Fortún S, Castaño A (2012) Cytotoxicity and genotoxicity of sewage treatment plant effluents in rainbow trout cells (RTG-2). Water Res 46:6351–6358.  https://doi.org/10.1016/j.watres.2012.08.039 CrossRefGoogle Scholar
  27. Lv QY, Wan B, Guo LH, Zhao L, Yang Y (2015) In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: apoptosis andimmune cell dysfunction. Chemosphere 120:621–630.  https://doi.org/10.1016/j.chemosphere.2014.08.029
  28. Macary F, Morin S, Probst J, Saudubray F (2014) A multi-scale method to assess pesticide contamination risks in agricultural watersheds. Ecol Indic 36:624–639.  https://doi.org/10.1016/j.ecolind.2013.09.001 CrossRefGoogle Scholar
  29. Marin-Morales MA, Ventura-Camargo BC, Hoshina MM (2013) Toxicity of herbicides: impact on aquatic and soil biota and human health. IntechOpen.  https://doi.org/10.5772/55851
  30. Marques A, Custódio M, Guilherme S, Gaivão I, Santos MA, Pacheco M (2014) Assessment of chromosomal damage induced by a deltamethrin-based insecticide in fish (Anguilla anguilla L.) - a follow-up study upon exposure and post-exposure periods. Pestic Biochem Physiol 113:40–46.  https://doi.org/10.1016/j.pestbp.2014.06.003 CrossRefGoogle Scholar
  31. Moura NA, Grassi TF, Rodrigues MAM, Barbisan LF (2010) Potential effects of the herbicide Diuron on mammary and urinary bladder two-stage carcinogenesis in a female Swiss mouse model. Arch Toxicol 84:165–173.  https://doi.org/10.1007/s00204-009-0477-0 CrossRefGoogle Scholar
  32. Narayanan KB, Ali M, Barclay BJ, Cheng QS, D’Abronzo L, Dornetshuber-Fleiss R et al (2015) Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 36:S89–S110.  https://doi.org/10.1093/carcin/bgv032 CrossRefGoogle Scholar
  33. Nigg EA (2002). Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815-825.  https://doi.org/10.1038/nrc924
  34. Osano O, Admiraal W, Klamer HJC, Pastor D, Bleeker EAJ (2002) Comparative toxic and genotoxic effects of chloroacetanilides, formamidines and their degradation products on Vibrio fischeri and Chironomus riparius. Environ Pollut 119:195–202.  https://doi.org/10.1016/S0269-7491(01)00334-7 CrossRefGoogle Scholar
  35. Pavlica M, Klobučar GIV, Vetma N, Erben R, Papeš D (2000) Detection of micronuclei in haemocytes of zebra mussel and great ramshorn snail exposed to pentachlorophenol. Mutat Res Genet Toxicol Environ Mutagen 465:145–150.  https://doi.org/10.1016/S1383-5718(99)00222-3 CrossRefGoogle Scholar
  36. Peixoto F, Alves-Fernandes D, Santos D, Fontaínhas-Fernandes A (2006) Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pestic Biochem Physiol 85:91–96.  https://doi.org/10.1016/j.pestbp.2005.10.007 CrossRefGoogle Scholar
  37. Phung TH, Jung S (2014) Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen. Pestic Biochem Phys 116:103–110.  https://doi.org/10.1016/j.pestbp.2014.10.002 CrossRefGoogle Scholar
  38. Plaire D, Bourdineaud J-P, Alonzo A, Camilleri V, Garcia-Sanchez L, Adam-Guillermin C, Alonzo F (2013) Transmission of DNA damage and increasing reprotoxic effects over two generations of Daphnia magna exposed to uranium. Comp Biochem Physiol C Toxicol Pharmacol 158:231–243.  https://doi.org/10.1016/j.cbpc.2013.09.001 CrossRefGoogle Scholar
  39. Reemtsma T, Alder L, Banasiak U (2013) A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry. J Chromatogr A 1271:95–104.  https://doi.org/10.1016/j.chroma.2012.11.023 CrossRefGoogle Scholar
  40. Rodilla V (1993) Origin and evolution of binucleated cells and binucleated cells with micronuclei in cisplatin-treated CHO cultures. Mutat Res 300:281–291.  https://doi.org/10.1016/0165-1218(93)90062-I CrossRefGoogle Scholar
  41. Rocha-Filho CA, Albuquerque LP, Silva LR, Silva PC, Coelho LC, Navarro DM, Albuquerque MC, Melo AM, Napoleão TH, Pontual EV, Paiva PM (2015) Assessment of toxicity of Moringa oleifera flower extract to Biomphalaria glabrata, Schistosoma mansoni and Artemia salina. Chemosphere 132:188–192.  https://doi.org/10.1016/j.chemosphere.2015.03.041
  42. Sinclair CJ, Boxall AB (2003) Assessing the ecotoxicity of pesticide transformation products. Environ Sci Tech 37:4617–4625.  https://doi.org/10.1021/es030038m CrossRefGoogle Scholar
  43. Souza Filho J, Sousa CCN, Silva CC, Sabóia-Morais SMT, Grisolia CK (2013) Mutagenicity and genotoxicity in gill erythrocyte cells of Poecilia reticulata exposed to a glyphosate formulation. Bull Environ Contam Toxicol 91:583–587.  https://doi.org/10.1007/s00128-013-1103-7 CrossRefGoogle Scholar
  44. Souza CP, Guedes TA, Fontanetti CS (2016) Evaluation of herbicides action on plant bioindicators by genetic biomarkers: a review. Environ Monit Assess 188:694.  https://doi.org/10.1007/s10661-016-5702-8 CrossRefGoogle Scholar
  45. Stagg NJ, LeBaron MJ, Eisenbrandt DL, Gollapudi BB, Klaunig JE (2012) Assessment of possible carcinogenicity of oxyfluorfen to humans using mode of action analysis of rodent liver effects. Toxicol Sci 128:334–345.  https://doi.org/10.1093/toxsci/kfs157 CrossRefGoogle Scholar
  46. Tallarico LF, Borrely SI, Hamada N, Grazeffe VS, Ohlweiler FP, Pereira CAB, Nakano E (2014) Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples. Ecotoxicol Environ Saf 110:208–215.  https://doi.org/10.1016/j.ecoenv.2014.09.005 CrossRefGoogle Scholar
  47. Terahara K, Takahashi KG (2008) Mechanisms and immunological roles of apoptosis in molluscs. Curr Pharm Des 14:131–137.  https://doi.org/10.2174/138161208783378725 CrossRefGoogle Scholar
  48. Tseng LH, Hsu PC, Lee CW, Tsai SS, Pan MH, Li MH (2013) Developmental exposure to decabrominated diphenyl ether (BDE-209): effects on sperm oxidative stress and chromatin DNA damage in mouse offspring. Environ Toxicol 28:380–389.  https://doi.org/10.1002/tox.20729 CrossRefGoogle Scholar
  49. Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol 36:337–397.  https://doi.org/10.1080/20014091074219 CrossRefGoogle Scholar
  50. U.S. EPA, United States Environmental Protection Agency (2016) Aquatic life benchmarks for pesticide registration. US Environmental Protection Agency Office of Pesticide Programs, Washington, DC https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-111601_1-Oct-02.pdf. Accessed 6th Sep 2018Google Scholar
  51. Wyllie AH (2010) Where, O death, is thy sting? A brief review of apoptosis biology. Mol Neurobiol 42:4–9.  https://doi.org/10.1007/s12035-010-8125-5 CrossRefGoogle Scholar
  52. Xie X, Wu Y, Zhu M, Zhang YK, Wang X (2011) Hydroxyl radical generation and oxidative stress in earthworms (Eisenia fetida) exposed to decabromodiphenyl ether (BDE-209). Ecotoxicology 20:993–999.  https://doi.org/10.1007/s10646-011-0645-x CrossRefGoogle Scholar
  53. Yusof S, Ismail A, Alias MS (2014) Effect of glyphosate-based herbicide on early life stages of Java medaka (Oryzias javanicus): a potential tropical test fish. Mar Pollut Bull 85:494–498.  https://doi.org/10.1016/j.marpolbul.2014.03.022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maíra de Vasconcelos Lima
    • 1
    • 2
    • 3
  • Williams Nascimento de Siqueira
    • 1
    • 2
    • 3
  • Hianna Arely Milca Fagundes Silva
    • 1
    • 3
  • José de Melo Lima Filho
    • 4
  • Elvis Joacir de França
    • 2
  • Ana Maria Mendonça de Albuquerque Melo
    • 1
    • 3
  1. 1.Departamento de Biofísica e RadiobiologiaUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Serviço de Monitoração AmbientalCentro Regional de Ciências Nucleares do NordesteRecifeBrazil
  3. 3.Laboratório de RadiobiologiaUniversidade Federal de Pernambuco (UFPE)RecifeBrazil
  4. 4.Grupo de Dosimetria NuméricaInstituto Federal de Educação Ciência e Tecnologia de PernambucoRecifeBrazil

Personalised recommendations