Advertisement

Nitrate removal from groundwater using negatively charged nanofiltration membrane

  • Lianpei Zou
  • Sitong Zhang
  • Jianyong Liu
  • Yi Cao
  • Guangren Qian
  • Yu-You Li
  • Zhi Ping Xu
Appropriate Technologies to Combat Water Pollution
  • 30 Downloads

Abstract

A commercial nanofiltration (NF) membrane was modified using poly(sodium 4-styrenesulfonate) (PSS) to improve the nitrate rejection from groundwater. Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential, and water contact angle analyses were performed, showing that PSS was successfully coated onto the membrane with the surface negative charge density being enhanced. The results of nitrate removal tests showed that the best PSS concentration was 1.5 mg/L, with the nitrate rejection rate of 88.8% and the permeate flux of 27.0 L/m2 h. The effect of initial nitrate concentration and solution pH on the nitrate removal performance of the modified NF membrane was investigated. The results indicate that the modified NF membrane can improve nitrate removal from actual groundwater, with little membrane permeate flux loss.

Graphical abstract

Keywords

Nanofiltration Negative charge density Sodium 4-styrenesulfonate Nitrate rejection rate Membrane permeate flux 

Notes

Funding information

This study was financially supported by the National Natural Science Foundation of China (51578329, 51778352), the Science and Technology Commission of Shanghai Municipality (16010500200, 18230710900), and Program for Innovative Research Team in University (IRT13078).

References

  1. Ahn SC, Oh SY, Cha DK (2008) Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J Hazard Mater 156:17–22CrossRefGoogle Scholar
  2. Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto J-C, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260CrossRefGoogle Scholar
  3. Bano S, Mahmood A, Kim S-J, Lee K-H (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3:2065–2071CrossRefGoogle Scholar
  4. Baticle P, Kiefer C, Lakhchaf N, Larbot A, Leclerc O, Persin M, Sarrazin J (1997) Salt filtration on gamma alumina nanofiltration membranes fired at two different temperatures. J Membr Sci 135:1–8CrossRefGoogle Scholar
  5. Bellona C, Drewes JE (2005) The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J Membr Sci 249:227–234CrossRefGoogle Scholar
  6. Bruggen BVD, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445CrossRefGoogle Scholar
  7. Chakrabortty S, Roy M, Pal P (2013) Removal of fluoride from contaminated groundwater by cross flow nanofiltration: transport modeling and economic evaluation. Desalination 313:115–124CrossRefGoogle Scholar
  8. Chen YM, Li CW, Chen SS (2005) Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere 59:753–759CrossRefGoogle Scholar
  9. Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695CrossRefGoogle Scholar
  10. Childress AE, Elimelech M (2000) Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ Sci Technol 34:3710–3716CrossRefGoogle Scholar
  11. Christensen JB, Christensen TH (2000) The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater. Water Res 34:3743–3754CrossRefGoogle Scholar
  12. Cortez S, Teixeira P, Oliveira R, Mota M (2011) Denitrification of a landfill leachate with high nitrate concentration in an anoxic rotating biological contactor. Biodegradation 22:661–671CrossRefGoogle Scholar
  13. Dang HQ, Price WE, Nghiem LD (2014) The effects of feed solution temperature on pore size and trace organic contaminant rejection by the nanofiltration membrane NF270. Sep Purif Technol 125:43–51CrossRefGoogle Scholar
  14. Drage TC, Arenillas A, Smith KM, Snape CE (2008) Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater 116:504–512CrossRefGoogle Scholar
  15. Epsztein R, Nir O, Lahav O, Green M (2015) Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem Eng J 279:372–378CrossRefGoogle Scholar
  16. Gayle BP, Boardman GD, Sherrard JH, Benoit RE (1989) Biological denitrification of water. J Environ Eng 115:930–943CrossRefGoogle Scholar
  17. Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater--a review. Bioresour Technol 99:3965–3974CrossRefGoogle Scholar
  18. Hasar H, Unsal SA, Ipek U, Karatas S, Cinar O, Yaman C, Kinaci C (2009) Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate. J Hazard Mater 171:309–317CrossRefGoogle Scholar
  19. Häyrynen K, Langwaldt J, Pongrácz E, Väisänen V, Mänttäri M, Keiski RL (2008) Separation of nutrients from mine water by reverse osmosis for subsequent biological treatment. Miner Eng 21:2–9CrossRefGoogle Scholar
  20. Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642CrossRefGoogle Scholar
  21. Jiang DD, Yao Q, McKinney MA, CA W (1999) TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym Degrad Stab 63:423–434CrossRefGoogle Scholar
  22. Jin KS, Na HS, Lee YM, Huh H, Nho YC (2001) Surface modification of polypropylene membranes by γ-ray induced graft copolymerization and their solute permeation characteristics. J Membr Sci 190:215–226CrossRefGoogle Scholar
  23. Jin Z, Chen Y, Wang F, Ogura N (2004) Detection of nitrate sources in urban groundwater by isotopic and chemical indicators, Hangzhou City, China. Environ Geol 45:1017–1024CrossRefGoogle Scholar
  24. Katsoyiannis IA, Zouboulis AI (2004) Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization. Water Res 38:1922–1932CrossRefGoogle Scholar
  25. Kelewou H, Lhassani A, Merzouki M, Drogui P, Sellamuthu B (2011) Salts retention by nanofiltration membranes: physicochemical and hydrodynamic approaches and modeling. Desalination 277:106–112CrossRefGoogle Scholar
  26. Kwon Y, Leckie J (2006) Hypochlorite degradation of crosslinked polyamide membranesII. Changes in hydrogen bonding behavior and performance. J Membr Sci 282:456–464CrossRefGoogle Scholar
  27. Lai GS, Lau WJ, Goh PS, Ismail AF, Yusof N, Tan YH (2016) Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 387:14–24CrossRefGoogle Scholar
  28. Li X, Feyter SD, Chen D, Aldea S, Vandezande P, Prez FD, Vankelecom IFJ (2008) Solvent-resistant nanofiltration membranes based on multilayered polyelectrolyte complexes. Chem Mater 20:3876–3883CrossRefGoogle Scholar
  29. Li J, Miao D, Yang R, Qu L, PdB H (2014) Synthesis of poly(sodium 4-styrenesulfonate) functionalized graphene/cetyltrimethylammonium bromide (CTAB) nanocomposite and its application in electrochemical oxidation of 2,4-dichlorophenol. Electrochim Acta 125:1–8CrossRefGoogle Scholar
  30. Liou YH, Lo SL, Lin CI, Hu CY, Kuan WH, Weng SC (2005) Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-reducing pretreatment and copper deposition. Environ Sci Technol 39:9643CrossRefGoogle Scholar
  31. Liu J, Hu X, Wang X, Yao J, Sun D, Fan Z, Guo M (2014) Facile synthesis of hollow microspheres of polyaniline using poly(sodium 4-styrenesulfonate) as dopant. Polym Int 63:722–726CrossRefGoogle Scholar
  32. Lockhart KM, King AM, Harter T (2013) Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J Contam Hydrol 151:140–154CrossRefGoogle Scholar
  33. López-Muñoz MJ, Sotto A, Arsuaga JM, Van der Bruggen B (2009) Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Sep Purif Technol 66:194–201CrossRefGoogle Scholar
  34. McLay CDADR, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204CrossRefGoogle Scholar
  35. Mohammad AW, Hilal N, Al-Zoubi H, Darwish NA (2007): Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. J Membr Sci 289, 40–50CrossRefGoogle Scholar
  36. Mohanty AK, Das D, Panigrahi AK, Misra M (1998) Synthesis and characterization of a novel polyamide: polycondensation of 2,5-diaminothiazole with terephthalic acid. Eur Polym J 34:1889–1892CrossRefGoogle Scholar
  37. Paugam L, Taha S, Cabon J, Dorange G (2003) Elimination of nitrate ions in drinking waters by nanofiltration. Desalination 152:271–274CrossRefGoogle Scholar
  38. Paugam L, Diawara CK, Schlumpf JP, Jaouen P, Quéméneur F (2004a) Transfer of monovalent anions and nitrates especially through nanofiltration membranes in brackish water conditions. Sep Purif Technol 40:237–242CrossRefGoogle Scholar
  39. Paugam L, Taha S, Dorange G, Jaouen P, Quéméneur F (2004b) Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition. J Membr Sci 231:37–46CrossRefGoogle Scholar
  40. Pramoda KP, Chung TS, Liu SL, Oikawa H, Yamaguchi A (2000) Characterization and thermal degradation of polyimide and polyamide liquid crystalline polymers. Polym Degrad Stab 67:365–374CrossRefGoogle Scholar
  41. Qian J, Wang L, Liu Y, Wu B, Wang X (2015) Distribution of nitrate and its implication for the contaminant source in groundwater of Huaibei Plain, Anhui Province. Geosci J 19:537–545CrossRefGoogle Scholar
  42. Reddy AVR, Mohan DJ, Bhattacharya A, Shah VJ, Ghosh PK (2003) Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer. J Membr Sci 214:211–221CrossRefGoogle Scholar
  43. Reig M, Licon E, Gibert O, Yaroshchuk A, Cortina JL (2016) Rejection of ammonium and nitrate from sodium chloride solutions by nanofiltration: effect of dominant-salt concentration on the trace-ion rejection. Chem Eng J 303:401–408CrossRefGoogle Scholar
  44. Richards LA, Vuachère M, Schäfer AI (2010) Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 261:331–337CrossRefGoogle Scholar
  45. Richards LA, Schafer AI, Richards BS, Corry B (2012) The importance of dehydration in determining ion transport in narrow pores. Small 8:1701–1709CrossRefGoogle Scholar
  46. Richards LA, Richards BS, Corry B, Schäfer AI (2013a): Response to comment on “experimental energy barriers to anions transporting through nanofiltration membranes”. Environ Sci Technol 47, 8987–8988Google Scholar
  47. Richards LA, Richards BS, Corry B, Schafer AI (2013b): Experimental energy barriers to anions transporting through nanofiltration membranes. Environ Sci Technol 47, 1968–1976CrossRefGoogle Scholar
  48. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232CrossRefGoogle Scholar
  49. Santafé-Moros A, Gozálvez-Zafrilla JM, Lora-García J (2005) Performance of commercial nanofiltration membranes in the removal of nitrate ions. Desalination 185:281–287CrossRefGoogle Scholar
  50. Santafé-Moros A, Gozálvez-Zafrilla JM, Lora-García J (2007) Nitrate removal from ternary ionic solutions by a tight nanofiltration membrane. Desalination 204:63–71CrossRefGoogle Scholar
  51. Santafé-Moros A, Gozálvez-Zafrilla JM, Lora-García J (2008) Applicability of the DSPM with dielectric exclusion to a high rejection nanofiltration membrane in the separation of nitrate solutions. Desalination 221:268–276CrossRefGoogle Scholar
  52. Seman MNA, Khayet M, Hilal N (2010) Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. J Membr Sci 348:109–116CrossRefGoogle Scholar
  53. Shu GHPH, Hwang BK (1994) Ionization of poly (ethylenimine) and pol (allylamine) at various ph’s. Bioorg Chem 22:318–327CrossRefGoogle Scholar
  54. Soares MIM (2000) Biological denitrification of groundwater. Water Air Soil Pollut 123:183–193CrossRefGoogle Scholar
  55. Strebel O, Duynisveld WHM, Böttcher J (1989) Nitrate pollution of groundwater in western Europe. Agric Ecosyst Environ 26:189–214CrossRefGoogle Scholar
  56. Su M, Wang D-X, Wang X-L, Ando M, Shintani T (2006) Rejection of ions by NF membranes for binary electrolyte solutions of NaCl, NaNO3, CaCl2 and Ca(NO3)2. Desalination 191:303–308CrossRefGoogle Scholar
  57. Thapinta A, Hudak PF (2003) Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand. Environ Int 29:87–93CrossRefGoogle Scholar
  58. Till BA, Weathers LJ, Alvarez PJJ (1998) Fe(0)-supported autotrophic denitrification. Environ Sci Technol 32:634–639CrossRefGoogle Scholar
  59. Wang DX, Su M, Yu ZY, Wang XL, Ando M, Shintani T (2005) Separation performance of a nanofiltration membrane influenced by species and concentration of ions. Desalination 175:219–225CrossRefGoogle Scholar
  60. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuel 16:1463–1469CrossRefGoogle Scholar
  61. Xu HM, Wei JF, Wang XL (2014) Nanofiltration hollow fiber membranes with high charge density prepared by simultaneous electron beam radiation-induced graft polymerization for removal of Cr(VI). Desalination 346:122–130CrossRefGoogle Scholar
  62. Zhang Y, Van der Bruggen B, Chen GX, Braeken L, Vandecasteele C (2004) Removal of pesticides by nanofiltration: effect of the water matrix. Sep Purif Technol 38:163–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lianpei Zou
    • 1
  • Sitong Zhang
    • 1
  • Jianyong Liu
    • 1
  • Yi Cao
    • 1
  • Guangren Qian
    • 1
  • Yu-You Li
    • 1
    • 2
  • Zhi Ping Xu
    • 1
    • 3
  1. 1.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.Department of Civil and Environmental Engineering, Graduate School of EngineeringTohoku UniversitySendaiJapan
  3. 3.ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia

Personalised recommendations