Environmental Science and Pollution Research

, Volume 26, Issue 3, pp 2761–2770 | Cite as

Bioconversion of lignin into bioplastics by Pandoraea sp. B-6: molecular mechanism

  • Dan Liu
  • Xu Yan
  • Mengying Si
  • Xinhui Deng
  • Xiaobo Min
  • Yan ShiEmail author
  • Liyuan ChaiEmail author
Research Article


Lignin is a byproduct in the pulp and paper industry and is considered as a promising alternative for the provision of energy and chemicals. Currently, the efficient valorization of lignin is a challenge owing to its polymeric structure complexity. Here, we present a platform for bio-converting Kraft lignin (KL), to polyhydroxyalkanoate (PHA) by Pandoraea sp. B-6 (hereafter B-6). Depolymerization of KL by B-6 was first confirmed, and > 40% KL was degraded by B-6 in the initial 4 days. Characterization of PHA showed that up to 24.7% of PHA accumulated in B-6 grown in 6-g/L KL mineral medium. The composition, structure, and thermal properties of the produced PHA were analyzed, revealing that 3-hydroxybutyrate was the only monomer and that PHA was comparable with the commercially available bioplastics. Moreover, the genomic analysis illustrated three core enzymatic systems for lignin depolymerization including laccases, peroxidases, and Fenton-reaction enzymes; five catabolic pathways for LDAC degradation and a gene cluster consisting of bktB, phaR, phaB, phaA, and phaC genes involved in PHA biosynthesis. Accordingly, a basic model for the process from lignin depolymerization to PHA production was constructed. Our findings provide a comprehensive perspective for lignin valorization and bio-material production from waste.


Lignin valorization Polyhydroxyalkanoate Pandoraea sp. B-6 Genomic analysis Five catabolic pathways Bio-material production 


Funding information

This work was supported by the National Key R&D Plan (2016YFC0403003), the National Natural Science Foundation of China (31400115, 51474102), and the China Postdoctoral Science Foundation (2017M612594).

Supplementary material

11356_2018_3785_MOESM1_ESM.doc (845 kb)
ESM 1 (DOC 845 kb)


  1. Betancur M, Bonelli PR, Velásquez JA, Cukierman AL (2009) Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater: effect of demineralisation. Bioresour Technol 100:1130–1137CrossRefGoogle Scholar
  2. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896CrossRefGoogle Scholar
  3. Chai L, Chen Y, Tang C, Yang Z, Zheng Y, Shi Y (2014) Depolymerization and decolorization of Kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol 98:1907–1912CrossRefGoogle Scholar
  4. Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H (2012) Biodegradation of Kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol 112:900–906CrossRefGoogle Scholar
  5. Ciesielczyk F, Bartczak P, Klapiszewski Ł, Jesionowski T (2017) Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent. J Hazard Mater 328:150–159CrossRefGoogle Scholar
  6. Estrada JM, Hernández S, Muñoz R, Revah S (2013) A comparative study of fungal and bacterial biofiltration treating a VOC mixture. J Hazard Mater 250-251:190–197CrossRefGoogle Scholar
  7. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, John FS, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719CrossRefGoogle Scholar
  8. Frank K, Sippl MJ (2008) High-performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24:2172–2176CrossRefGoogle Scholar
  9. Haq I, Kumar S, Kumari V, Singh SK, Raj A (2016) Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent. J Hazard Mater 305:190–199CrossRefGoogle Scholar
  10. Jimenez JR, Claiborn CS, Dhammapala RS, Simpson CD (2007) Methoxyphenols and levoglucosan ratios in PM2.5 from wheat and Kentucky bluegrass stubble burning in eastern Washington and northern Idaho. Environ Sci Technol 41:7824–7829CrossRefGoogle Scholar
  11. Kong L, Hasanbeigi A, Price L (2016) Assessment of emerging energy-efficiency technologies for the pulp and paper industry: a technical review. J Clean Prod 122:5–28CrossRefGoogle Scholar
  12. Kosa M, Ragauskas AJ (2013) Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chem 15:2070–2074CrossRefGoogle Scholar
  13. Levasseur A, Piumi F, Coutinho PM, Rancurel C, le Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E (2008) FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 45:638–645CrossRefGoogle Scholar
  14. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272CrossRefGoogle Scholar
  15. Li J, Li Y, Wu Y, Zheng M (2014) A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. J Hazard Mater 280:450–457CrossRefGoogle Scholar
  16. Li Z, Ge Y, Wan L (2015) Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. J Hazard Mater 285:77–83CrossRefGoogle Scholar
  17. Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci USA 111:12013–12018CrossRefGoogle Scholar
  18. Liu B, Jin Y, Xie G, Wang Z, Wen H, Ren N, Xing D (2018a) Simultaneous photo catalysis of SiC/Fe3O4 nano-particles and photo-fermentation of Rhodopseudomonas sp. nov. strain A7 for enhancing hydrogen production under visible light irradiation. ES Energ Environ 1:56–66Google Scholar
  19. Liu D, Yan X, Zhuo S, Si M, Liu M, Wang S, Ren L, Chai L, Shi Y (2018b) Pandoraea sp. B-6 assists the deep eutectic solvent pretreatment of rice straw via promoting lignin depolymerization. Bioresour Technol 257:62–68CrossRefGoogle Scholar
  20. Lourençon TV, Hansel FA, Silva TAD, Ramos LP, de Muniz GIB, Magalhães WLE (2015) Hardwood and softwood Kraft lignins fractionation by simple sequential acid precipitation. Sep Purif Technol 154:82–88CrossRefGoogle Scholar
  21. Lv H, Yan L, Zhang M, Geng Z, Ren M, Sun Y (2013) Influence of supercritical CO2 pretreatment of corn stover with ethanol-water as co-solvent on lignin degradation. Chem Eng Technol 36:1899–1906CrossRefGoogle Scholar
  22. Ma J, Zhang K, Liao H, Hector SB, Shi X, Li J, Liu B, Xu T, Tong C, Liu X, Zhu Y (2016) Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels 9:25CrossRefGoogle Scholar
  23. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Wymelenberg AV, Gaskell J, Lindquist E, Sabat G, BonDurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959CrossRefGoogle Scholar
  24. Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15CrossRefGoogle Scholar
  25. Nakamura T, Kawamoto H, Saka S (2007) Condensation reactions of some lignin related compounds at relatively low pyrolysis temperature. J Wood Chem Technol 27:121–133CrossRefGoogle Scholar
  26. Nanayakkara S, Patti AF, Saito K (2014) Lignin depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sustain Chem Eng 2:2159–2164CrossRefGoogle Scholar
  27. Palmeiro-Sánchez T, Fra-Vázquez A, Rey-Martínez N, Campos JL, Mosquera-Corral A (2016) Transient concentrations of NaCl affect the PHA accumulation in mixed microbial culture. J Hazard Mater 306:332–339CrossRefGoogle Scholar
  28. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41CrossRefGoogle Scholar
  29. Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794CrossRefGoogle Scholar
  30. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefGoogle Scholar
  31. Pfliegera M, Kroflič A (2017) Acute toxicity of emerging atmospheric pollutants from wood lignin due to biomass burning. J Hazard Mater 338:132–139CrossRefGoogle Scholar
  32. Reading NS, Welch KD, Aust SD (2003) Free radical reactions of wood-degrading fungi. ACS Symposium Series No. 845. American Chemical Society, Washington, pp. 16–31Google Scholar
  33. Reddy MV, Yajima Y, Mawatari Y, Hoshino T, Chang Y (2015) Degradation and conversion of toxic compounds into useful bioplastics by Cupriavidus sp. CY-1: relative expression of the PhaC gene under phenol and nitrogen stress. Green Chem 17:4560–4569CrossRefGoogle Scholar
  34. Reddy MV, Mawatari Y, Onodera R, Nakamura Y, Yajima Y, Chang Y (2017) Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. Bioresour Technol 234:99–105CrossRefGoogle Scholar
  35. Rehm BHA, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19CrossRefGoogle Scholar
  36. Santos OSH, Silva MCD, Silva VR, Mussel WN, Yoshida MI (2017) Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J Hazard Mater 324(PART B):406–413CrossRefGoogle Scholar
  37. Sen S, Patil S, Argyropoulos DS (2015) Methylation of softwood Kraft lignin with dimethyl carbonate. Green Chem 17:1077–1087CrossRefGoogle Scholar
  38. Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y (2013a) Characterization and genomic analysis of Kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels 6(1):1CrossRefGoogle Scholar
  39. Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q (2013b, 1957) Biochemical investigation of Kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng 36:–1965Google Scholar
  40. Shi Y, Yan X, Li Q, Wang X, Liu M, Xie S, Chai L, Yuan J (2017) Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem 52:238–242CrossRefGoogle Scholar
  41. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987Google Scholar
  42. Socrates G, Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, Ltd., ChichesterGoogle Scholar
  43. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process. Energy Environ Sci 6:994–1007CrossRefGoogle Scholar
  44. Tian J, Pourcher A, Bouchez T, Gelhaye E, Peu P (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98:9527–9544CrossRefGoogle Scholar
  45. Tribot A, Delattre C, Badel E, Dussap CG, Michaud P, Baynast HD (2018) Design of experiments for bio-based composites with lignosulfonates matrix and corn cob fibers. Ind Crop Prod 123:539–545CrossRefGoogle Scholar
  46. Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8:617–628CrossRefGoogle Scholar
  47. Wang H, Tucker M, Ji Y (2013a) Recent development in chemical depolymerization of lignin: a review. J Appl Chem 2013:1–9Google Scholar
  48. Wang Y, Yang Z, Peng B, Chai L, Wu B, Wu R (2013b) Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB. Environ Sci Pollut Res, 1-10Google Scholar
  49. Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43:7485–7500CrossRefGoogle Scholar
  50. Yan X, Li Q, Chai L, Yang B, Wang Q (2014) Formation of abiological granular sludge: a facile and bioinspired proposal for improving sludge settling performance during heavy metal wastewater treatment. Chemosphere 113:36–41CrossRefGoogle Scholar
  51. Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y (2017) Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour Technol 245:419–425CrossRefGoogle Scholar
  52. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRefGoogle Scholar
  53. Zhang K, Si M, Liu D, Zhuo S, Liu M, Liu H, Yan X, Shi Y (2018) A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass. Biotechnol Biofuels:1–14Google Scholar
  54. Zhao M, Zhang C, Zeng G, Huang D, Xu P, Cheng M (2015) Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation. Chemosphere 138:560–567CrossRefGoogle Scholar
  55. Zou P, Schrempf H (2000) The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. FEBS J 267:2840–2849Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Environmental Science and Engineering, School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control & Treatment of Heavy Metal PollutionChangshaChina

Personalised recommendations