Environmental Science and Pollution Research

, Volume 26, Issue 3, pp 2353–2362 | Cite as

The modulatory role of low concentrations of bisphenol A on tamoxifen-induced proliferation and apoptosis in breast cancer cells

  • Bin Huang
  • Nao Luo
  • Xinhao Wu
  • Zhixiang XuEmail author
  • Xiaoxia Wang
  • Xuejun PanEmail author
Research Article


Selective estrogen receptor modulators such as tamoxifen (TAM) significantly reduce the risks of developing estrogen receptor–positive (ER+) breast cancer. Low concentrations (nanomolar range) of bisphenol A (BPA) shows estrogenic effects and further promotes the proliferation of hormone-dependent breast cancer cells. However, whether or not BPA can influence TAM-treatment resistance in breast cancer has not drawn much attention. In the current study, low concentrations of BPA reduced TAM-induced cytotoxicity of MCF-7 cells, which was proved by the suppression of cell apoptosis, transition of cell cycle from G1 to S phase, and upregulation of cyclin D1 and ERα. Simultaneously, the mRNA levels of estrogen-related receptor γ (ERRγ) and its coactivators, peroxisome proliferation–activated receptor γ coactivator-1α (PGC-1α), and PGC-1β, were increased. However, the similar effects were not observed in MDA-MB-231 cells. Our results indicated that low concentrations of BPA decreased the sensitivity of TAM in MCF-7 cells rather than in MDA-MB-231 cells. These different actions likely involved the interaction of relative receptors and coactivators. This study provided a possible support that the exposure of BPA in environmental media may potentially induce TAM resistance to breast cancer treatment.


Bisphenol A Tamoxifen Cell viability Breast cancer cells Estrogen-related receptors 


Funding information

This project was sponsored by the National Natural Science Foundation of China (Grant no. 21567014) and the Yunnan Province Scholarship Award (Grant no. 1319880239).

Supplementary material

11356_2018_3780_MOESM1_ESM.pdf (68 kb)
ESM 1 (PDF 68 kb)


  1. Abad MC, Askari H, O’Neill J, Klinger AL, Milligan C, Lewandowski F, Springer B, Spurlino J, Rentzeperis D (2008) Structural determination of estrogen-related receptor γ in the presence of phenol derivative compounds. J Steroid Biochem Mol Biol 108(1–2):44–54Google Scholar
  2. Andersen HR, Andersson AM, Arnold SF, Autrup H, Barfoed M, Beresford NA, Bjerregaard P, Christiansen LB, Gissel B, Hummel R, Jørgensen EB, Korsgaard B, Guevel RL, Leffers H, McLachlan J, Møller A, Nielsen JB, Olea N, Oles-Karasko A, Pakdel F, Pedersen KL, Perez P, Skakkebœk NE, Sonnenschein C, Soto AM, Sumpter JP, Thorpe SM, Grandjean P (1999) Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Persp 107(Suppl 1):89–108Google Scholar
  3. Chen ZJ, Yang XL, Liu H, Wei W, Zhang KS, Huang HB, Giesy JP, Liu HL, Du J, Wang HS (2015) Bisphenol A modulates colorectal cancer protein profile and promotes the metastasis via induction of epithelial to mesenchymal transitions. Arch Toxicol 89(8):1371–1381Google Scholar
  4. Coates AS, Keshaviah A, Thürlimann B, Mouridsen H, Mauriac L, Forbes JF, Paridaens R, Castiglione-Gertsch M, Gelber RD, Colleoni M, Láng I, Mastro LD, Smith I, Chirgwin J, Nogaret JM, Pienkowski T, Wardley A, Jakobsen EH, Price KN, Goldhirsch A (2007) Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 25(5):486–492Google Scholar
  5. Cover CM, Hsieh SJ, Cram EJ, Hong C, Riby JE, Bjeldanes LF, Firestone GL (1999) Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells. Cancer Res 59(6):1244–1251Google Scholar
  6. Dairkee SH, Luciani-torres MG, Moore DH (2013) Bisphenol-A-induced inactivation of the p53 axis underlying deregulation of proliferation kinetics, and cell death in non-malignant human breast epithelial cells. Carcinogenesis 34:703–712Google Scholar
  7. Delgado M, Ribeiro-Varandas E (2015) Bisphenol a at the reference level counteracts doxorubicin transcriptional effects on cancer related genes in HT29 cells. Toxicol in Vitro 29(8):2009–2014Google Scholar
  8. Diel P, Olff S, Schmidt S, Michna H (2002) Effects of the environmental estrogens bisphenol A, o, p′-DDT, p-tert-octylphenol and coumestrol on apoptosis induction, cell proliferation and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF-7. J Steroid Biochem Mol Biol 80(1):61–70Google Scholar
  9. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348Google Scholar
  10. Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, Maghuin-Rogister G, Pironnet AM, Pussemier L, Scippo ML, Loco JV, Covaci A (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–3740Google Scholar
  11. Giguère V (2008) Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 29(6):677–696Google Scholar
  12. Girard BJ, Anderson TMR, Welch SL, Nicely J, Seewaldt VL, Ostrander JH (2015) Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from tam-induced cell death. PLoS One 10(3):e0121206Google Scholar
  13. Goodson WH III, Luciani MG, Sayeed SA, Jaffee IM, Moore IIDH, Dairkee SH (2011) Activation of the mTOR pathway by low levels of xenoestrogens in breast epithelial cells from high-risk women. Carcinogenesis 32(11):1724–1733Google Scholar
  14. Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T, Safe S, McDonnell DP, Gaido KW (1998) Bisphenol A interacts with the estrogen receptor α in a distinct manner from estradiol. Mol Cell Endocrinol 142(1):203–214Google Scholar
  15. Hoekstra EJ, Simoneau C (2013) Release of bisphenol A from polycarbonate—a review. Crit Rev Food Sci 53(4):386–402Google Scholar
  16. Hong H, Yang L, Stallcup MR (1999) Hormone-independent transcriptional activation and coactivator binding by novel orphan noclear receptor ERR3. J Biol Chem 274(32):22618–22626Google Scholar
  17. Im J, Loffler FE (2016) Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol 50(16):8403–8416Google Scholar
  18. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88(3):347–354Google Scholar
  19. Katchy A, Pinto C, Jonsson P, Nguyen-Vu T, Pandelova M, Riu A, Schramm KW, Samarov D, Gustafsson JÅ, Bondesson M, Williams C (2013) Coexposure to phytoestrogens and bisphenol A mimics estrogenic effects in an additive manner. Toxicol Sci 138(1):21–35Google Scholar
  20. Kelly PN, Strasser A (2011) The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 18(9):1414–1424Google Scholar
  21. Kim HS, Ishizaka M, Kazusaka A, Fujita S (2007) Di-(2-ethylhexyl) phthalate suppresses tamoxifen-induced apoptosis in GH3 pituitary cells. Arch Toxicol 81(1):27–33Google Scholar
  22. Kuiper GGJM, Lemmen JG, Carlsson BO, Corton JC, Safe SH, Saag PTVD, Burg BVD, Gustafsson JÅ (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139(10):4252–4263Google Scholar
  23. LaPensee EW, Tuttle TR, Fox S, Ben-Jonathanet N (2009) Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-α–positive and–negative breast cancer cells. Environ Health Persp 117(2):175–180Google Scholar
  24. LaPensee EW, LaPensee CR, Fox S, Schwemberger S, Afton S, Ben-Jonathanet N (2010) Bisphenol A and estradiol are equipotent in antagonizing cisplatin-induced cytotoxicity in breast cancer cells. Cancer Lett 290(2010):167–173Google Scholar
  25. La Rosa P, Pellegrini M, Totta P, Acconcia F, Marino M (2014) Xenoestrogens alter estrogen receptor (ER) α intracellular levels. PLoS One 9(2):e88961Google Scholar
  26. Lee SY, Ahn BT, Baik SH, Baik SH, Lee BL (1998) Tamoxifen inhibits GH3 cell growth in culture via enhancement of apoptosis. Neurosurgery 43(1):116–123Google Scholar
  27. Lee HR, Hwang KA, Park MA (2012) Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway. Int J Mol Med 29(5):883–890Google Scholar
  28. Li Y, Birnbaumer L, Teng CT (2010) Regulation of ERRα gene expression by estrogen receptor agonists and antagonists in SKBR3 breast cancer cells: differential molecular mechanisms mediated by G protein-coupled receptor GPR30/GPER-1. Mol Endocrinol 24(5):969–980Google Scholar
  29. Lillo MA, Nichols C, Seagroves TN, Miranda-Carboni GA, Krum SA (2017) Bisphenol A induces Sox2 in ER+ breast cancer stem-like cells. Horm Cancer-US 8(2):90–99Google Scholar
  30. Liu H, Chen F, Zhang L, Zhou Q, Gui S, Wang Y (2016) A novel all-trans retinoic acid derivative 4-amino-2-trifluoromethyl-phenyl retinate inhibits the proliferation of human hepatocellular carcinoma HepG2 cells by inducing G0/G1 cell cycle arrest and apoptosis via upregulation of p53 and ASPP1 and downregulation of iASPP. Oncol Rep 36(1):333–341Google Scholar
  31. Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM, Gillet C, Ellis P, Ryder K, Reid JF, Daidone MG, Pierotti MA, Berns EM, Jansen MPHM, Foekens JA, Delorenzi M, Bontempi G, Piccart MJ, Sotiriou C (2008) Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9(1):239Google Scholar
  32. Luciani-Torres MG, Moore DH, Goodson IIIWH, Dairkee SH (2014) Exposure to the polyester PET precursor—terephthalic acid induces and perpetuates DNA damage-harboring non-malignant human breast cells. Carcinogenesis 36(1):168–176Google Scholar
  33. Madhavan S, Gusev Y, Singh S, Riggins RB (2015) ERRγ target genes are poor prognostic factors in tamoxifen-treated breast cancer. J Exp Clin Canc Res 34(1):45Google Scholar
  34. Mandlekar S, Yu R, Tan TH, Kong ANT (2000) Activation of caspase-3 and c-Jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells. Cancer Res 60(21):5995–6000Google Scholar
  35. Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata S, Kimura M, Shimohigashi Y (2007) Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERRγ. J Biochem 142(4):517–524Google Scholar
  36. Mesner PW, Budihardjo II (1997) Kaufmann SH. Chemotherapy-induced apoptosis. Adv Pharmacol 41: 461–499Google Scholar
  37. Michałowicz J (2014) Bisphenol A–sources, toxicity and biotransformation. Environ Toxicol Phar 37(2):738–758Google Scholar
  38. Nigam M, Ranjan V, Srivastava S, Sharma R, Balapure AK (2008) Centchroman induces G0/G1 arrest and caspase-dependent apoptosis involving mitochondrial membrane depolarization in MCF-7 and MDA MB-231 human breast cancer cells. Life Sci 82(11):577–590Google Scholar
  39. Okada H, Tokunaga T, Liu XH, Takayanagi S, Matsushima A, Shimohigashi Y (2008) Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-γ. Environ Health Persp 116(1):32–38Google Scholar
  40. Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247Google Scholar
  41. Peyrade F, Frenay M, Etienne MC, Ruch F, Guillemare C, Francois E, Namer M, Ferrece JM, Milano G (1996) Age-related difference in tamoxifen disposition. Clin Pharmacol Ther 59(4):401–410Google Scholar
  42. Pfeifer D, Chung YM, Hu MCT (2015) Effects of low-dose bisphenol A on DNA damage and proliferation of breast cells: the role of c-Myc. Environ Health Persp 123(12):1271–1279Google Scholar
  43. Riggins RB, Lan JPJ, Klimach U, Zwart A, Cavalli LR, Haddad BR, Chen L, Gong T, Xuan J, Ethier SP, Clarke R (2008) ERRγ mediates tamoxifen resistance in novel models of invasive lobular breast cancer. Cancer Res 68(21):8908–8917Google Scholar
  44. Schwartz GK, Shah MA (2015) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23(36):9408–9421Google Scholar
  45. Song H, Zhang T, Yang P, Li MH, Yang YH, Wang YY, Du J, Pan KJ, Zhang K (2015) Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRγ signals. Toxicol in Vitro 30(1):521–528Google Scholar
  46. Suzuki T, Miki Y, Moriya T, Shimada N, Ishida T, Hirakawa H, Ohuchi N, Sasano H (2004) Estrogen-related receptor α in human breast carcinoma as a potent prognostic factor. Cancer Res 64(13):4670–4676Google Scholar
  47. Thiantanawat A, Long BJ, Brodie AM (2003) Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens. Cancer Res 63(22):8037–8050Google Scholar
  48. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin S, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95Google Scholar
  49. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJR, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Persp 118(8):1055–1070Google Scholar
  50. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, Saal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455Google Scholar
  51. Wang Z, Liu HY, Liu SJ (2017) Low-dose bisphenol A exposure: a seemingly instigating carcinogenic effect on breast cancer. Adv Sci 4(2):1600248Google Scholar
  52. Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24(2):178–198Google Scholar
  53. Wu J, Jiang Y, Cao W, Li X, Xie C, Geng S (2018) mir-19 targeting of pten mediates butyl benzyl phthalate-induced proliferation in both ER(+) and ER(-) breast cancer cells. Toxicol Lett 295:124–133Google Scholar
  54. Xu ZX, Liu J, Gu LP, Ma XD, Huang B, Pan XJ (2016) Research progress on the reproductive and non-reproductive endocrine tumors by estrogen-related receptors. J Steroid Biochem Mol Biol 158:22–30Google Scholar
  55. Xu ZX, Liu J, Gu LP, Huang B, Pan XJ (2017a) Biological effects of xenoestrogens and the functional mechanisms via genomic and nongenomic pathways. Environ Rev 25(3):306–322Google Scholar
  56. Xu ZX, Liu J, Wu XH, Huang B, Pan XJ (2017b) Nonmonotonic responses to low doses of xenoestrogens: a review. Environ Res 155:199–207Google Scholar
  57. Xu ZX, Huang B, Liu J, Wu XH, Luo N, Wang XX, Zheng ZY, Pan XJ (2018) Combinatorial anti-proliferative effects of tamoxifen and naringenin: the role of four estrogen receptor subtypes. Toxicology 410:231–246Google Scholar
  58. Yeh WL, Lin HY, Wu HM, Chen DR (2014) Combination treatment of tamoxifen with risperidone in breast cancer. PLoS One 9(6):e98805Google Scholar
  59. Zuccarello P, Oliveri CG, Cavallaro F, Copat C, Cristaldi A, Fiore M, Ferrante M (2018) Implication of dietary phthalates in breast cancer: a systematic review. Food Chem Toxicol 118:667–674Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Environmental Science and EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations