Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 3, pp 2623–2634 | Cite as

Monitoring the morphological integrity of neotropical anurans

  • Rinneu Elias BorgesEmail author
  • Lia Raquel de Souza Santos
  • Rhayane Alves Assis
  • Marcelino Benvindo-Souza
  • Lilian Franco-Belussi
  • Classius de Oliveira
Research Article
  • 92 Downloads

Abstract

Amphibians are considered to be excellent bioindicators to their morphophysiological characteristics and life cycle. In this context, the present study investigated the morphological integrity of anuran larvae collected in preserved environments in the Emas National Park, in the municipality of Mineiros (Goiás state, Brazil), and in environments representative of the agricultural matrix of the Rio Verde region, also in Goiás, where there is a long history of the use of agricultural pesticides. Samples of water from temporary ponds, permanent dams, and veredas were analyzed for the presence of pesticides and, especially atrazine (5350 μg/L), found at significantly higher concentrations in the agricultural matrix. We observed a high percentage (approximately 10%) of morphological malformations including alterations of the fins in Boana albopunctatus and Scinax fuscovarius; alteration in oral structures in B. albopunctatus, Dematonotus muelleri, Physalaemus centralis, Physalaemus cuvieri, and Leptodactylus fuscus mainly in the tadpoles collected in the agricultural environment in comparison with those from the protected area (3.5%; P < 0.0001, χ2 31.75). However, changes in the eyes, mouth, intestines, and nostrils, as well as amelia were observed only in the agricultural environment. The vast majority of the observed malformations were associated with the tail and oral disc, which suggests that these anatomical parameters may be used as sensitive morphological biomarkers. Given these findings, we reinforce that areas of agricultural land may have a deleterious effect on the morphological integrity of the tadpoles and consequently, on their development, and that these features may be used as indicators of environmental quality and health.

Keywords

Amphibians Ecotoxicology Malformations Bioindicators Pesticides Agriculture 

Notes

Acknowledgments

We are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for supporting this study through grant number 477044/2013-1, and the São Paulo State Research Foundation (FAPESP) for supporting laboratory procedures (process no. 2013/02067-5). LFB was also supported by a CAPES-PNPD postdoc fellowship during the final preparation of this manuscript. We also thank Rio Verde University (UniRV) for providing a researcher stipend, and the Chico Mendes Institute for Biodiversity Conservation (IBAMA/ICMBio) and the administration of Emas National Park for authorizing and supporting the fieldwork.

Supplementary material

11356_2018_3779_MOESM1_ESM.doc (72 kb)
ESM 1 (DOC 72 kb)

References

  1. Agostini MG, Kacoliris F, Demetrio P, Natale GS, Bonetto C, Ronco AE (2013) Abnormalities in amphibian populations inhabiting agroecosystems in northeastern Buenos Aires Province, Argentina. Dis Aquat Org 104:163–171CrossRefGoogle Scholar
  2. Allran JW, William HK (2001) Effects of atrazine on embryos, larvae, and adults of anuran amphibians. Environ Toxicol Chem 20:769–775CrossRefGoogle Scholar
  3. Ankley GT, Rodney DJ (2004) Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals. ILAR J 45:469–483CrossRefGoogle Scholar
  4. Babini MS, Bionda CL, Salas NE, Martino AL (2016) Adverse effect of agroecosystem pond water on biological endpoints of common toad (Rhinella arenarum) tadpoles. Environ Monit Assess 188:2–14CrossRefGoogle Scholar
  5. Babini MS, Bionda CL, Salas NE, Martino AL (2015) Health status of tadpoles and metamorphs of Rhinella arenarum (Anura, Bufonidae) that inhabit agroecosystems and its implications for land use. Ecotoxicol Environ Saf 118:118–125CrossRefGoogle Scholar
  6. Bacon JP, Fort CE, Todhunter B, Mathis M, Fort DJ (2013) Effects of multiple chemical, physical, and biological stressors on the incidence and types of abnormalities observed in Bermuda's cane toads (Rhinella marina). J Exp Zool 320B:218–237CrossRefGoogle Scholar
  7. Baier F, Jedinger M, Gruber E, Zaller JG (2016) Temperature-dependence of glyphosate-based herbicide’s effects on egg and tadpole growth of common toads. Front Environ Sci 4:51CrossRefGoogle Scholar
  8. Ballengée B, Sessions SK (2009) Explanation for missing limbs in deformed amphibians. J Exp Zool 312:1–10Google Scholar
  9. Bantle JA, Dumont JN, Finch RA, Linder G (1991) Atlas of abnormalities: a guide for the performance of FETAX. Oklahoma State University Press, OklahomaGoogle Scholar
  10. Blaustein AR, Han BA, Relyea RA, Johnson PTJ et al (2011) The complexity of amphibian population declines: understanding the role of co-factors in driving amphibian losses. Ann N Y Acad Sci 123:108–119CrossRefGoogle Scholar
  11. Blaustein AR, Johnson PT (2003) The complexity of deformed amphibians. Front Ecol Environ 1:87–94CrossRefGoogle Scholar
  12. Bowerman J, Johnson PTJ, Bowerman T (2010) Sublethal predators and their injured prey: linking aquatic predators and severe limb abnormalities in amphibians. Ecology 91:242–251CrossRefGoogle Scholar
  13. Brandão FP, Marques S, Rodrigues S, Santos B, Travasso R, Venâncio C, Pereira R, Ortiz-Santaliestra M, Soares A, Gonçalves F, Lopes I (2011) Influência da temperatura na toxicidade de cobre em girinos de rã verde Pelophylax perezi. Captar 3:66–77Google Scholar
  14. Brandão RA (2002) A new species of Phyllomedusa Wagler, 1830 (Anura: Hylidae) from Central Brazil. J Herpetol 36:571–578CrossRefGoogle Scholar
  15. Bridges CM (2000) Long-term effects of pesticide exposure at various life stages of the southern leopard frog (Rana sphenocephala). Arch Environ Contam Toxicol 39:91–96CrossRefGoogle Scholar
  16. Britson CA, Threlkeld ST (1998) Abundance, metamorphosis, developmental, and behavioral abnormalities in Hyla chrysoscelis tadpoles following exposure to three agrichemicals and methyl mercury in outdoor mesocosms. Bull Environ Contam Toxicol 61:154–161CrossRefGoogle Scholar
  17. Brunelli E, Bernabó I, Berg C, Lundstedt-Enkel K (2009) Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat Toxicol 91:135–142CrossRefGoogle Scholar
  18. Budischak SA, Belden LK, Hopkins WA (2008) Effects of malathion on embryonic development and latent susceptibility to trematode parasites in ranid tadpoles. Environ Toxicol Chem 27:2496–2500CrossRefGoogle Scholar
  19. Burger J, Snodgrass JW (2000) Oral deformities in several species of frogs from the Savannah River site, USA. Environ Toxicol Chem 19:2519–2524CrossRefGoogle Scholar
  20. Candioti JV, Natale GS, Soloneski S, Ronco AE, Larramendy RL (2010) Sublethal and lethal effects on Rhinella Arenarum (Anura, Bufonidae) tadpoles exerted by the pirimicarb-containing technical formulation insecticide Aficida®. Chemosphere 78:249–255CrossRefGoogle Scholar
  21. Carezzano FJ, Cabrera MR (2011) Variación en la fórmula dentaria larval de Physalaemus biligonigerus (Amphibia, Leptodactylidae) de humedalesen agroecosistemas del sur de Córdoba, Argentina. Boletín de la Sociedad Zoológica del Uruguay 20:28–33Google Scholar
  22. Carr JA, Gentles A, Smith EE, Goleman WL, Urquidi LJ, Thuett K, Kendall RJ, Giesy JP, Gross TS, Solomon KR, Van Der Krak G (2003) Response of larval Xenopus laevis to atrazine: assessment of growth, metamorphosis, and gonadal and laryngeal morphology. Environ Toxicol Chem 22:396–405CrossRefGoogle Scholar
  23. Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS One 9:96580CrossRefGoogle Scholar
  24. Chen TH, Jackson G, William K (2007) Adverse effects of chronic copper exposure in larval northern leopard frogs (Rana pipiens). Environ Toxicol Chem 26:1470–1475CrossRefGoogle Scholar
  25. Christin MS, Gendron AD, Brousseau P, Me’nard L, Marcogliese DJ, Cyr D, Ruby S, Fournier M (2003) Effects of agricultural pesticides on the immune system of Rana pipiens and on its resistance to parasitic infection. Environ Toxicol Chem 22:1127–1133CrossRefGoogle Scholar
  26. Coady KK, Murphy MB, Villeneuve DL, Hecker M, Jones PD, Carr JA, Solomon KR, Smith EE, Van Der Kraak G, Kendall RJ, Giesy JP (2005) Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis. Ecotoxicol Environ Saf 62:160–173CrossRefGoogle Scholar
  27. Dawson AB (1932) A ventral accessory tail in Triturus viridescens and its duplication experimentally. Anat Rec 52:139–149CrossRefGoogle Scholar
  28. Drake DL, Altig R, Grace JB, Walls SC (2007) Occurrence of oral deformities in larval anurans. Copeia 2:449–458CrossRefGoogle Scholar
  29. Egea-Serrano A, Relyea RA, Tejedo M, Torralva M (2012) Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecol Evol 2:1382–1397CrossRefGoogle Scholar
  30. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Balzer C (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  31. Franco-Belussi L, Sko HN, Oliveira C (2016) Internal pigment cells respond to external UV radiation in frogs. J Exp Biol 219:1378–1383CrossRefGoogle Scholar
  32. Gendron AD, Marcogliese DJ, Barbeau S, Christin MS, Brousseau P, Ruby S, Cyr D, Fournier M (2003) Exposure of leopard frogs to a pesticide mixture affects life history characteristics of the lungworm Rhabdias ranae. Oecologia 135:469–476CrossRefGoogle Scholar
  33. Goncalves MW, Gambale PG, Godoy FR, Alves AA, Rezende PHD, Maciel NM, Nomura F, Bastos RP, Marco P (2017) The agricultural impact of pesticides on Physalaemus cuvieri tadpoles (Amphibia: Anura) ascertained by comet assay. Zoologia 4:e19865Google Scholar
  34. Goncalves MW, Vieira TB, Maciel NM, Carvalho WF, Lima LSF, Gambale PG, Cruz AD, Nomura F, Bastos RP, Silva DM (2015) Detecting genomic damages in the frog Dendropsophus minutus: preserved versus perturbed areas. Environ Sci Pollut Res 22:3947–3954.  https://doi.org/10.1007/s11356-014-3682-1 CrossRefGoogle Scholar
  35. Gonçalves MW, de Campos CBM, Batista VG, da Cruz AD, de Marco Junior P, Bastos RP, e Silva, D. D. M. (2017) Genotoxic and mutagenic effects of Atrazine Atanor 50 SC on Dendropsophus minutus Peters, 1872 (Anura: Hylidae) developmental larval stages. Chemosphere 182:730–737Google Scholar
  36. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  37. Hayes TB, Collins A, Mendonza M, Noriega N, Stuart AA, Vonk A (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci 99:5476–5480CrossRefGoogle Scholar
  38. Hayes TB, Stuart AA, Mendonza CA, Noriega N, Vonk A, Johnston G, Liu R, Kpodzo D (2006) Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17β-estradiol): support for the demasculinization/feminization hypothesis. Environ Health Perspect 114:134–141CrossRefGoogle Scholar
  39. Heyer WR, Donnelly MA, Mcdiamird RW, Hayek LC, Foster M (1994) Measuaring and monitoring biological diversity standard methods for amphibians. Smithsonian Institutions Press, WashingtonGoogle Scholar
  40. Ibama, Instituto Brasileiro de Meio Ambiente e Recursos Naturais Renováveis (2014) Relatórios de comercialização de agrotóxicos 2014. http://www.ibama.gov.br/areas-tematicas-qa/relatorios-decomercializacao-de-agrotoxicos/pagina-3. Accessed 15 september 2017
  41. Iupac, International Union Of Pure and Applied Chemistry (2018) Global availability of information on agrochemicals. Atrazine. https://sitem.herts.ac.uk/aeru/iupac/Reports/43.htm. Accessed 15 september 2017
  42. Johnson PTJ, Lunde KB, Ritchie EG, Launer AE (1999) The effect of trematode infection on amphibian limb development and survivorship. Science 284:802–804CrossRefGoogle Scholar
  43. Johnson PTJ, Sutherland DR, Kinsella JM, Lunde KB (2004) Review of the trematode genus Ribeiroia (Psilostomidae): ecology, life history and pathogenesis with special emphasis on the amphibian malformation problem. Adv Parasitol 57:191–253CrossRefGoogle Scholar
  44. Kiesecker JM (2002) Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature? Proc Natl Acad Sci 99:9900–9904CrossRefGoogle Scholar
  45. Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341:759–765CrossRefGoogle Scholar
  46. Krishnamurthy SV, Smith GR (2011) Combined effects of malathion and nitrate on early growth, abnormalities, and mortality of wood frog (Rana sylvatica) tadpoles. Ecotoxicology 20:1361–1367CrossRefGoogle Scholar
  47. Lajmanovich RC, Sandoval MT, Peltzer PM (2003) Induction of mortality and malformation in Scinax nasicus tadpoles exposed by glyphosate formulations. Bull Environ Contam Toxicol 70:612–618CrossRefGoogle Scholar
  48. Lannoo M (2008) The collapse of aquatic ecosystems: malformed frogs. University of California press, BerkeleyCrossRefGoogle Scholar
  49. Lunde KB, Johnson PTJ (2012) A practical guide for the study of malformed amphibians and their causes. J Herpetol 46:429–441CrossRefGoogle Scholar
  50. Lynn WG (1950) A case of duplication of the tail in Plethodon. Herpetologica 6:81–84Google Scholar
  51. Mann RM, Ross VH, Catherine BC, Scott PW (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927CrossRefGoogle Scholar
  52. Martin LB, Hopkins WA, Mydlarz LD, Rohr JR (2010) The effects of anthropogenic global changes on immune functions and disease resistance. Ann N Y Acad Sci 1195:129–148CrossRefGoogle Scholar
  53. Mccoy KA, Bortnick LJ, Campbell CM, Hamlin HJ, Guillette JR, Lj ST, Mary CM (2008) Agriculture alters gonadal form and function in the toad Bufomarinus. Environ Healt Perspect 116:1526–1532CrossRefGoogle Scholar
  54. McDaniel TV, Martin PA, Ross N, Brown S, Lesage S, Pauli BD (2004) Effects of chlorinated solvents on four species of North American amphibians. Arch Environ Contam Toxicol 47:101–109CrossRefGoogle Scholar
  55. Montalvão MF, da Silva Castro AL, de Lima Rodrigues AS, Oliveira Mendes B, Malafaia G (2018) Impacts of tannery effluent on development and morphological characters in a neotropical tadpole. Sci Total Environ 610-611:1595–1606CrossRefGoogle Scholar
  56. Mouillot D, Culioli JM, Pelletier D, Tomasini JA (2008) Do we protect biological originality in protected areas? A new index and an application to the Bonifacio Strait Natural Reserve. Biol Conserv 141:1569–1580CrossRefGoogle Scholar
  57. Peltzer PM, Lajmanovich RC, Attademo AM, Junges CM, Cabagna-Zenklusen MC, Repetti MR, Sigrist ME, Beldómenico H (2013) Effect of exposure to contaminated pond sediments on survival, development, and enzyme and blood biomarkers in veined treefrog (Trachycephalustyphonius) tadpoles. Ecotoxicol Environ Saf 98:142–151CrossRefGoogle Scholar
  58. Pérez-Iglesias JM (2015) Biomarcadores para avaliação dos efeitos da atrazina em girinos de Rhinella schneideri (Bufonidae) e Physalaemus nattereri (Leiuperidae): utilização de parâmetros tradicionais e pigmentação visceral. Dissertation, Universidade Estadual PaulistaGoogle Scholar
  59. Pérez-Iglesias JM, Arcaute CR, Nikoloff N, Dury L, Soloneski S, Natale GS, Larramendy ML (2014) The genotoxic effects of the imidacloprid-based insecticide formulation GlacoxanImida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 104:120–126CrossRefGoogle Scholar
  60. Pérez-Iglesias JM, Franco-Belussi L, Moreno L, Tripole S, Oliveira C, Natale GS (2016) Effect of glyphosate on hepatic tissue evaluating melanomacrophages and erythrocytes responses in neotropical anuran Leptodactylus latinasus. Environ Sci Pollut Res 23:9852–9861CrossRefGoogle Scholar
  61. Pezzuti TL (2011) Girinos do quadrilátero ferrífero, sudeste do Brasil: Ecomorfologia e chave de identificação interativa. Dissertation, Universidade Federal de Minas GeraisGoogle Scholar
  62. Pignati AW, Lima FANS, Lara SS, Correa MLM, Barbosa JR, Leão LHC, Pignatti MG (2017) Spatial distribution of pesticide use in Brazil: a strategy for health surveillance. Ciência & Saúde Coletiva 22:3281–3293CrossRefGoogle Scholar
  63. Robles-Mendoza C, García-Basilio C, Cram-Heydrich S, Hernández-Quiroz M, Vanegas-Pérez C (2009) Organophosphorus pesticides effect on early stages of the axolotl Ambystoma mexicanum (Amphibia: Caudata). Chemosphere 74:703–710CrossRefGoogle Scholar
  64. Rossa-Feres DC, Nomura F (2006) Morphological characterization and taxonomic key for tadpoles (Amphibia: Anura) from northwestern region of São Paulo state, Brazil. Biota Neotropica 6:1–26CrossRefGoogle Scholar
  65. Rohr JR, McCoy KA (2010) A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ Health Perspect 18:20–32CrossRefGoogle Scholar
  66. Rohr JR, Raffel TR, Sessions SK, Hudson PJ (2008) Understanding the net effects of pesticides on amphibian trematode infections. Ecol Appl 18:1743–1753CrossRefGoogle Scholar
  67. Rowe CL, Kinney OM, Fiori AP, Congdon JD (1996) Oral deformities in tadpoles (Rana catesbeiana) associated with coal ash deposition: effects on grazing ability and growth. Freshw Biol 36:723–730CrossRefGoogle Scholar
  68. Rowe CL, Hopkins WA, Congdon JD (2002) Ecotoxicological implications of aquatic disposal of coal combustion residues in the United States: a review. Environ Monit Assess 80:207–276CrossRefGoogle Scholar
  69. Rudek Z, Rozek M (1992) Induction of micronuclei in tadpoles of Rana temporaria and Xenopuslaevis by the pyrethroid Fastac 10 EC. Mutat Res 298:25–29CrossRefGoogle Scholar
  70. Schiesari L, Grillitsch B (2011) Pesticides meet megadiversity in the expansion of biofuel crops. Front Ecol Environ 9:215–221CrossRefGoogle Scholar
  71. Schiesari L, Grillitsch B, Grillitsch H (2007) Biogeographic biases in research and their consequences for linking amphibian declines to pollution. Conserv Biol 21:465–471CrossRefGoogle Scholar
  72. Schmutzer A, Chandler Gray MJ, Burton EC, Miller DL (2008) Impacts of cattle on amphibian larvae and the aquatic environment. Freshw Biol 53:2613–2625CrossRefGoogle Scholar
  73. Svartz GV, Jorge H, Cristina SPC (2012) Sublethal effects of atrazine on embryo-larval development of Rhinella arenarum (Anura: Bufonidae). Ecotoxicology 21:1251–1259CrossRefGoogle Scholar
  74. Taylor B, Skelly D, Demarchis LK, Slade MD, Galusha D, Rabinowitz PM (2005) Proximity to pollution sources and risk of amphibians limb malformation. Environ Health Perspect 113:1497–1501CrossRefGoogle Scholar
  75. Toledo LF (2005) Predation of juvenile and adult anurans by invertebrates: current knowledge and perspectives. Herpetol Rev 36:395–400Google Scholar
  76. Venesky MD, Parris MJ, Storfer A (2009) Impacts of Batrachochytrium dendrobatidis infection on tadpole foraging performance. EcoHealth 6:565–575CrossRefGoogle Scholar
  77. Venesky MD, Wassersug RJ, Parris MJ (2010) How does a change in labial tooth row number affect feeding kinematics and foraging performance of a ranid tadpole (Lithobates sphenocephalus)? Biol Bull 218:160–168.  https://doi.org/10.1086/BBLv218n2p160 CrossRefGoogle Scholar
  78. Voccia I, Blakley B, Brousseau P, Fournier M (1999) Immunotoxicity of pesticides: a review. Toxicol Ind Health 15:119–132CrossRefGoogle Scholar
  79. Wagner D, Brühl M, Veith PP, Lötters S (2014) Evaluating the risk of pesticide exposure for amphibian species listed in Annex II of the European Union Habitats Directive. Biol Conserv 176:64–70CrossRefGoogle Scholar
  80. Young B, Stuart SN, Chanson JS, Cox NA, Boucher TM (2004) Disappearing jewels: The status of New World amphibians. Nature Serve, ArlingtonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversidade de Rio Verde, UniRVRio VerdeBrazil
  2. 2.Laboratory of Animal Biology, Instituto Federal GoianoIF GoianoRio VerdeBrazil
  3. 3.Department of BiologyUniversidade Estadual Paulista -Júlio de Mesquita Filho, UNESPSão José do Rio PretoBrazil
  4. 4.Institute of BiosciencesUniversidade Federal de Mato Grosso do Sul, UFMSCampo GrandeBrazil

Personalised recommendations