Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 1962–1972 | Cite as

Insights into the effect of chemical treatment on the physicochemical characteristics and adsorption behavior of pig manure-derived biochars

  • Rong-Zhong Wang
  • Dan-Lian HuangEmail author
  • Chen Zhang
  • Yun-Guo LiuEmail author
  • Guang-Ming Zeng
  • Cui Lai
  • Xiao-Min Gong
  • Min Cheng
  • Jia Wan
  • Qing Zhang
Research Article
  • 58 Downloads

Abstract

Chemical treatment could improve the adsorption performance of biochars (BC). In order to deal with Pb(II) pollution, four types of biochars including unmodified, acid-treated, alkali-treated, and magnetic-treated pig manure-derived biochars (PBCs) were prepared. The effect of chemical treatment on the physical property, chemical composition, and the adsorption behavior of biochars was compared. Magnetic and alkali treatment improved pore volume and specific surface areas, and the adsorption capacity and rates were enhanced. In contrast, the adsorption capacity of acid-treated BC decreased due to the significant decrease of ash content. The magnetic samples displayed the satisfactory absorption performance, which could achieve 99.8% removal efficiency within 15 min at a Pb(II) concentration of 50 mg/L. Considering its properties of excellent adsorption performance, fast reaction rate, and convenient recovery by an external magnetic field, magnetic biochar based on pig manure may provide an effective way to remove heavy metals and decrease the pig manure solid waste.

Keywords

Pig manure Biochar Chemical treatment Modification Pb(II) Adsorption 

Notes

Acknowledgements

This study was financially supported by the Program for the National Natural Science Foundation of China (51879101, 51579098, 51779090, 51709101, 51521006, 51809090, 51278176, 51378190), the National Program for Support of Top–Notch Young Professionals of China (2014), the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17), and Hunan Provincial Science and Technology Plan Project (No.2016RS3026, 2017SK2243, 2018SK20410), and the Fundamental Research Funds for the Central Universities (531109200027, 531107051080, 531107050978).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228.  https://doi.org/10.1016/j.biortech.2010.02.052 CrossRefGoogle Scholar
  2. Chandraiah MR (2016) Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium. Alex Eng J 55:619–625.  https://doi.org/10.1016/j.aej.2015.12.015 CrossRefGoogle Scholar
  3. Chen D, Yu X, Song C, Pang X, Huang J, Li Y (2016) Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar. Bioresour Technol 218:1303–1306.  https://doi.org/10.1016/j.biortech.2016.07.112 CrossRefGoogle Scholar
  4. Devi P, Saroha AK (2014) Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol 169:525–531.  https://doi.org/10.1016/j.biortech.2014.07.062 CrossRefGoogle Scholar
  5. Ding Z, Hu X, Wan Y, Wang S, Gao B (2016) Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests. J Ind Eng Chem 33:239–245.  https://doi.org/10.1016/j.jiec.2015.10.007 CrossRefGoogle Scholar
  6. Elbayaa AA, Badawy NA, Alkhalik EA (2009) Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. J Hazard Mater 170:1204–1209.  https://doi.org/10.1016/j.jhazmat.2009.05.100 CrossRefGoogle Scholar
  7. Fan Y, Wang B, Yuan S, Wu X, Chen J, Wang L (2010) Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour Technol 101:7661–7664.  https://doi.org/10.1016/j.biortech.2010.04.046 CrossRefGoogle Scholar
  8. Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Zhang C, Cheng M, Qin X, Xue W (2017) Stabilized nanoscale zero-valent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51:11308–11316.  https://doi.org/10.1021/acs.est.7b03164 CrossRefGoogle Scholar
  9. Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C (2018) Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: fFor heavy metals stabilization and dye adsorption. Bioresour Technol 253:64–71.  https://doi.org/10.1016/j.biortech.2018.01.018 CrossRefGoogle Scholar
  10. Huang DL, Wang RZ, Liu YG, Zeng GM, Lai C, Xu P, Lu BA, Xu JJ, Wang C, Huang C (2015a) Application of molecularly imprinted polymers in wastewater treatment: a review. Environ Sci Pollut Res 22:963–977.  https://doi.org/10.1007/s11356-014-3599-8 CrossRefGoogle Scholar
  11. Huang G, Wang D, Ma S, Chen J, Jiang L, Wang P (2015b) A new, low-cost adsorbent: preparation, characterization, and adsorption behavior of Pb(II) and cu(II). J Colloid Interface Sci 445:294–302.  https://doi.org/10.1016/j.jcis.2014.12.099 CrossRefGoogle Scholar
  12. Huang D, Wang Y, Zhang C, Zeng G, Lai C, Wan J, Qin L, Zeng Y (2016a) Influence of morphological and chemical features of biochar on hydrogen peroxide activation: implications on sulfamethazine degradation. RSC Adv 6:73186–73196.  https://doi.org/10.1039/c6ra11850j CrossRefGoogle Scholar
  13. Huang D, Xue W, Zeng G, Wan J, Chen G, Huang C, Zhang C, Cheng M, Xu P (2016b) Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: impact on enzyme activities and microbial community diversity. Water Res 106:15–25.  https://doi.org/10.1016/j.watres.2016.09.050 CrossRefGoogle Scholar
  14. Huang D, Liu L, Zeng G, Xu P, Huang C, Deng L, Wang R, Wan J (2017) The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 174:545–553.  https://doi.org/10.1016/j.chemosphere.2017.01.130 CrossRefGoogle Scholar
  15. Huang D, Deng R, Wan J, Zeng G, Xue W, Wen X, Zhou C, Hu L, Liu X, Xu P (2018a) Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: accompanied with the change of available phosphorus and organic matters. J Hazard Mater 348:109–116.  https://doi.org/10.1016/j.jhazmat.2018.01.024 CrossRefGoogle Scholar
  16. Huang D, Qin X, Peng Z, Liu Y, Gong X, Zeng G, Huang C, Cheng M, Xue W, Wang X (2018b) Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol Environ Saf 153:229–237.  https://doi.org/10.1016/j.ecoenv.2018.01.060 CrossRefGoogle Scholar
  17. Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629.  https://doi.org/10.1016/j.biortech.2014.06.103 CrossRefGoogle Scholar
  18. Karunanayake AG, Todd OA, Crowley ML, Ricchetti LB, Jr CUP, Anderson R, Mlsna TE (2017) Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir. Chem Eng J 319:75–88.  https://doi.org/10.1016/j.cej.2017.02.116 CrossRefGoogle Scholar
  19. Komkiene J, Baltrenaite E (2016) Biochar as adsorbent for removal of heavy metal ions [cadmium(II), copper(II), lead(II), zinc(II)] from aqueous phase. Int J Environ Sci Technol 13:471–482.  https://doi.org/10.1007/s13762-015-0873-3 CrossRefGoogle Scholar
  20. Li Y, Shao J, Wang X, Yong D, Yang H, Chen H (2014) Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuel 28:5119–5127.  https://doi.org/10.1021/ef500725c CrossRefGoogle Scholar
  21. Li B, Yang L, Wang CQ, Zhang QP, Liu QC, Li YD, Xiao R (2017a) Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 175:332–340.  https://doi.org/10.1016/j.chemosphere.2017.02.061 CrossRefGoogle Scholar
  22. Li J, Liang N, Jin X, Zhou D, Li H, Wu M, Pan B (2017b) The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes. Chemosphere 171:66–73.  https://doi.org/10.1016/j.chemosphere.2016.12.041 CrossRefGoogle Scholar
  23. Liu Z, Zhang FS (2011) Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination 267:101–106.  https://doi.org/10.1016/j.desal.2010.09.013 CrossRefGoogle Scholar
  24. Liu P, Liu WJ, Jiang H, Chen JJ, Li WW, Yu HQ (2012) Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour Technol 121:235–240.  https://doi.org/10.1016/j.biortech.2012.06.085 CrossRefGoogle Scholar
  25. Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55:712A–724A.  https://doi.org/10.1021/ac00258a001 CrossRefGoogle Scholar
  26. Nan N, Devallance DB (2017) Development of poly(vinyl alcohol)/wood-derived biochar composites for use in pressure sensor applications. J Mater Sci 52(13):8247–8257.  https://doi.org/10.1007/s10853-017-1040-7 CrossRefGoogle Scholar
  27. Petit C, Peterson GW, Mahle J, Bandosz TJ (2010) The effect of oxidation on the surface chemistry of sulfur-containing carbons and their arsine adsorption capacity. Carbon 48:1779–1787.  https://doi.org/10.1016/j.carbon.2010.01.024 CrossRefGoogle Scholar
  28. Robau-Sánchez A, Aguilar-Elguézabal A, Aguilar-Pliego J (2005) Chemical activation of Quercus agrifolia char using KOH: evidence of cyanide presence. Microporous Mesoporous Mater 85:331–339.  https://doi.org/10.1016/j.micromeso.2005.07.003 CrossRefGoogle Scholar
  29. Tan XF, Liu YG, Gu YL, Liu SB, Zeng GM, Cai X, Hu XJ, Wang H, Liu SM, Jiang LH (2016) Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass ( Boehmeria nivea (L.) Gaud.): characterization and application for crystal violet removal. J Environ Manag 184:85–93.  https://doi.org/10.1016/j.jenvman.2016.08.070 CrossRefGoogle Scholar
  30. Trakal L, Veselská V, Šafařík I, Vítková M, Číhalová S, Komárek M (2015) Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour Technol 203:318–324.  https://doi.org/10.1016/j.biortech.2015.12.056 CrossRefGoogle Scholar
  31. Uçar S, Erdem M, Tay T, Karagöz S (2015) Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Technol Environ 17:747–756.  https://doi.org/10.1007/s10098-014-0830-8 CrossRefGoogle Scholar
  32. Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441.  https://doi.org/10.1016/j.jhazmat.2011.03.063 CrossRefGoogle Scholar
  33. Wang LG, Yan GB (2011) Adsorptive removal of direct yellow 161dye from aqueous solution using bamboo charcoals activated with different chemicals. Desalination 274:81–90.  https://doi.org/10.1016/j.desal.2011.01.082 CrossRefGoogle Scholar
  34. Wang H, Yuan X, Wu Z, Wang L, Peng X, Leng L, Zeng G (2014a) Removal of basic dye from aqueous solution using Cinnamomum camphora sawdust: kinetics, isotherms, thermodynamics, and mass-transfer processes. Sep Sci Technol 49:2689–2699.  https://doi.org/10.1080/01496395.2014.940590 CrossRefGoogle Scholar
  35. Wang H, Yuan X, Zeng G, Leng L, Peng X, Liao K, Peng L, Xiao Z (2014b) Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent. Enviro Sci Pollut Res 21:11552–11564.  https://doi.org/10.1007/s11356-014-3025-2 CrossRefGoogle Scholar
  36. Wang SY, Tang YK, Li K, Mo YY, Li HF, Gu ZQ (2014c) Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresour Technol 174:67–73.  https://doi.org/10.1016/j.biortech.2014.10.007 CrossRefGoogle Scholar
  37. Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, Liu C, Chen L, Xing B (2015) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317.  https://doi.org/10.1016/j.biortech.2014.11.077 CrossRefGoogle Scholar
  38. Wang F, Ren X, Sun H, Ma L, Zhu H, Xu J (2016a) Sorption of polychlorinated biphenyls onto biochars derived from corn straw and the effect of propranolol. Bioresour Technol 219:458–465.  https://doi.org/10.1016/j.biortech.2016.08.006 CrossRefGoogle Scholar
  39. Wang H, Yuan X, Yan W, Zeng G, Dong H, Chen X, Leng L, Wu Z, Peng L (2016b) In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl Catal B Environ 186:19–29.  https://doi.org/10.1016/j.apcatb.2015.12.041 CrossRefGoogle Scholar
  40. Wang RZ, Huang DL, Liu YG, Peng ZW, Zeng GM, Lai C, Xu P, Huang C, Zhang C, Gong XM (2016c) Selective removal of BPA from aqueous solution using molecularly imprinted polymers based on magnetic graphene oxide. RSC Adv 6:106201–106210.  https://doi.org/10.1039/c6ra21148h CrossRefGoogle Scholar
  41. Wang H, Wu Y, Feng M, Tu W, Xiao T, Xiong T, Ang H, Yuan X, Chew JW (2018a) Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res 144:215–225.  https://doi.org/10.1016/j.watres.2018.07.025 CrossRefGoogle Scholar
  42. Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Zeng GM, Cheng M, Gong XM, Wan J, Luo H (2018b) Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresour Technol 261:265–271.  https://doi.org/10.1016/j.biortech.2018.04.032 CrossRefGoogle Scholar
  43. Wei G, Lin H, Cui JY, Bu MD, Zhang BB (2013) Biogas energy potential for livestock manure and gross control of animal feeding in region level of China. Trans Chin Soc Agric Eng 29:171–179.  https://doi.org/10.3969/j.issn.1002-6819.2013.1.023 Google Scholar
  44. Wnetrzak R, Leahy J, Chojnacka KW, Saeid A, Novotny E, Jensen LS, Kwapinski W (2014) Influence of pig manure biochar mineral content on Cr (III) sorption capacity. J Chem Technol Biot 89:569–578.  https://doi.org/10.1002/jctb.4159 CrossRefGoogle Scholar
  45. Wu W, Li J, Niazi NK, Müller K, Chu Y, Zhang L, Yuan G, Lu K, Song Z, Wang H (2016) Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ Sci Pollut Res 23:22890–22896.  https://doi.org/10.1007/s11356-016-7428-0 CrossRefGoogle Scholar
  46. Wu W, Li J, Lan T, Müller K, Niazi NK, Chen X, Xu S, Zheng L, Chu Y, Li J (2017) Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: a microscopic and spectroscopic investigation. Sci Total Environ 576:766–774.  https://doi.org/10.1016/j.scitotenv.2016.10.163 CrossRefGoogle Scholar
  47. Xue W, Huang D, Zeng G, Wan J, Zhang C, Xu R, Cheng M, Deng R (2017) Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J Hazard Mater 341:381–389.  https://doi.org/10.1016/j.jhazmat.2017.06.028 CrossRefGoogle Scholar
  48. Yap MW, Mubarak NM, Sahu JN, Abdullah EC (2016) Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. J Ind Eng Chem 45:287–295.  https://doi.org/10.1016/j.jiec.2016.09.036 CrossRefGoogle Scholar
  49. Zhang C, Lai C, Zeng G, Huang D, Yang C, Wang Y, Zhou Y, Cheng M (2016) Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Res 95:103–112.  https://doi.org/10.1016/j.watres.2016.03.014 CrossRefGoogle Scholar
  50. Zhang T, Zhu X, Shi L, Li J, Li S, Lü J, Li Y (2017) Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals. Bioresour Technol 235:185–192.  https://doi.org/10.1016/j.biortech.2017.03.109 CrossRefGoogle Scholar
  51. Zhou L, Liu Y, Liu S, Yin Y, Zeng G, Tan X, Hu X, Hu X, Jiang L, Ding Y (2016) Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour Technol 218:351–359.  https://doi.org/10.1016/j.biortech.2016.06.102 CrossRefGoogle Scholar
  52. Zhu Q, Wu J, Wang L, Gang Y, Zhang X (2016) Adsorption characteristics of Pb2+ onto wine lees-derived biochar. Bull Environ Contam Toxicol 97:294–299.  https://doi.org/10.1007/s00128-016-1760-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rong-Zhong Wang
    • 1
    • 2
  • Dan-Lian Huang
    • 1
    • 2
    Email author
  • Chen Zhang
    • 1
    • 2
  • Yun-Guo Liu
    • 1
    • 2
    Email author
  • Guang-Ming Zeng
    • 1
    • 2
  • Cui Lai
    • 1
    • 2
  • Xiao-Min Gong
    • 1
    • 2
  • Min Cheng
    • 1
    • 2
  • Jia Wan
    • 1
    • 2
  • Qing Zhang
    • 1
    • 2
  1. 1.College of Environmental Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Environmental Biology and Pollution Control, Ministry of EducationHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations