Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 3, pp 2580–2591 | Cite as

Fenton-based electrochemical degradation of metolachlor in aqueous solution by means of BDD and Pt electrodes: influencing factors and reaction pathways

  • Abdoulaye ThiamEmail author
  • Ricardo Salazar
Research Article
  • 51 Downloads

Abstract

This work explores the role of electrode material and the oxidation ability of electrochemical advanced oxidation processes (EAOPs), such as electro-oxidation (EO) with or without H2O2 production, electro-Fenton (EF), and UVA photoelectron-Fenton (PEF), in the degradation of metolachlor. The performance of the EAOPs using Boron-doped diamond (BDD) or Pt as anode has been compared from the analysis of decay kinetics, mineralization profile, and energy consumption using small undivided batch cell. Metolachlor concentration always decays following a pseudo-first-order kinetics. Using the Pt anode, none of the processes reaches 30% mineralization, including PEF. In contrast, the BDD anode showed a higher mineralization rate allowing almost total mineralization in PEF due to the synergetic action of UVA light and oxidant hydroxyl radicals formed in the bulk from Fenton’s reaction, as well as in the BDD, which has large reactivity to oxidize the pollutants. The increase in current density and decrease in metolachlor concentration accelerated the mineralization in PEF, although lower current efficiency and higher energy consumption was obtained. The GC-MS and HPLC analysis allowed the identification of up to 17 aromatics intermediates and 7 short-chain carboxylic acids. Finally, a reaction pathway for metolachlor mineralization by EAOPs is proposed. PEF with BDD allowed total removal of the herbicide in real water matrix and a high mineralization (83.82%).

Keywords

Metolachlor Electrochemical oxidation Electro-Fenton Oxidation products Photoelectro-Fenton, real wastewater 

Notes

Acknowledgments

CONICYT (Chile) provided the financial support under FONDECYT postdoctorado projects no. 3160753, Fondecyt Iniciación no. 11170882, and Fondecyt regular no. 1170352.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. © World Health Organization (1993) Guidelines for Drinking-Water Quality - WHO 1993. 1:11.  https://doi.org/10.1017/CBO9781107415324.004
  2. Almeida LC, Garcia-Segura S, Arias C, Bocchi N, Brillas E (2012) Electrochemical mineralization of the azo dye acid red 29 (Chromotrope 2R) by photoelectro-Fenton process. Chemosphere 89:751–758.  https://doi.org/10.1016/j.chemosphere.2012.07.007 CrossRefGoogle Scholar
  3. Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755.  https://doi.org/10.1002/jctb.2214 CrossRefGoogle Scholar
  4. Barra Caracciolo A, Giuliano G, Grenni P, Guzzella L, Pozzoni F, Bottoni P, Fava L, Crobe A, Orrù M, Funari E (2005) Degradation and leaching of the herbicides metolachlor and diuron: a case study in an area of northern Italy. Environ Pollut 134:525–534.  https://doi.org/10.1016/j.envpol.2004.08.014 CrossRefGoogle Scholar
  5. Boye B, Dieng MM, Brillas E (2003) Electrochemical degradation of 2,4,5-trichlorophenoxyacetic acid in aqueous medium by peroxi-coagulation. Effect of pH and UV light. Electrochim Acta 48:781–790.  https://doi.org/10.1016/S0013-4686(02)00747-8 CrossRefGoogle Scholar
  6. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166–167:603–643.  https://doi.org/10.1016/j.apcatb.2014.11.016 CrossRefGoogle Scholar
  7. Brillas E, Boye B, Sirés I, Garrido JA, Rodrı́guez RḾ, Arias C, Cabot PĹ, Comninellis C (2004) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim Acta 49:4487–4496.  https://doi.org/10.1016/j.electacta.2004.05.006 CrossRefGoogle Scholar
  8. Brillas E, Sirés I, M a O (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631.  https://doi.org/10.1021/cr900136g CrossRefGoogle Scholar
  9. Chaplin BPP (2014) Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ Sci Process Impacts 16:1182–1203.  https://doi.org/10.1039/C3EM00679D CrossRefGoogle Scholar
  10. Coffinet S, Rifai A, Genty C, Souissi Y, Bourcier S, Sablier M, Bouchonnet S (2012) Characterization of the photodegradation products of metolachlor: structural elucidation, potential toxicity and persistence. J Mass Spectrom 47:1582–1593.  https://doi.org/10.1002/jms.3121 CrossRefGoogle Scholar
  11. Coria G, Sirés I, Brillas E, Nava JL (2016) Influence of the anode material on the degradation of naproxen by Fenton-based electrochemical processes. Chem Eng J 304:817–825.  https://doi.org/10.1016/j.cej.2016.07.012 CrossRefGoogle Scholar
  12. Daneshvar N, Aber S, Vatanpour V, Rasoulifard MH (2008) Electro-Fenton treatment of dye solution containing Orange II: influence of operational parameters. J Electroanal Chem 615:165–174.  https://doi.org/10.1016/j.jelechem.2007.12.005 CrossRefGoogle Scholar
  13. Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46:4074–4082.  https://doi.org/10.1021/es204621q CrossRefGoogle Scholar
  14. El-Ghenymy A, Rodríguez RM, Brillas E et al (2014) Electro-Fenton degradation of the antibiotic sulfanilamide with Pt/carbon-felt and BDD/carbon-felt cells. Kinetics, reaction intermediates, and toxicity assessment. Environ Sci Pollut Res 21:8368–8378.  https://doi.org/10.1007/s11356-014-2773-3 CrossRefGoogle Scholar
  15. Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 228:944–964.  https://doi.org/10.1016/j.cej.2013.05.061 CrossRefGoogle Scholar
  16. Friedman CL, Lemley AT, Hay A (2006) Degradation of chloroacetanilide herbicides by anodic Fenton treatment. J Agric Food Chem 54:2640–2651.  https://doi.org/10.1021/jf0523317 CrossRefGoogle Scholar
  17. Garcia-Segura S, Brillas E (2016) Combustion of textile monoazo, diazo and triazo dyes by solar photoelectro-Fenton: decolorization, kinetics and degradation routes. Appl Catal B Environ 181:681–691.  https://doi.org/10.1016/j.apcatb.2015.08.042 CrossRefGoogle Scholar
  18. Garcia-Segura S, Brillas E, Cornejo-Ponce L, Salazar R (2016) Effect of the Fe3+/Cu2+ ratio on the removal of the recalcitrant oxalic and oxamic acids by electro-Fenton and solar photoelectro-Fenton. Sol Energy 124:242–253.  https://doi.org/10.1016/j.solener.2015.11.033 CrossRefGoogle Scholar
  19. Garcia-Segura S, Ocon JD, Chong MN (2018) Electrochemical oxidation remediation of real wastewater effluents—a review. Process Saf Environ Prot 113:48–67.  https://doi.org/10.1016/j.psep.2017.09.014 CrossRefGoogle Scholar
  20. Gozzi F, Sirés I, Thiam A, de Oliveira SC, Junior AM, Brillas E (2017) Treatment of single and mixed pesticide formulations by solar photoelectro-Fenton using a flow plant. Chem Eng J 310:503–513.  https://doi.org/10.1016/j.cej.2016.02.026 CrossRefGoogle Scholar
  21. Gozzi F, Sirés I, de Oliveira SC, Machulek A Jr, Brillas E (2018) Influence of chelation on the Fenton-based electrochemical degradation of herbicide tebuthiuron. Chemosphere 199:709–717.  https://doi.org/10.1016/j.chemosphere.2018.02.060 CrossRefGoogle Scholar
  22. Guinea E, Garrido JA, Rodríguez RM, Cabot PL, Arias C, Centellas F, Brillas E (2010) Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim Acta 55:2101–2115.  https://doi.org/10.1016/j.electacta.2009.11.040 CrossRefGoogle Scholar
  23. Isarain-Chávez E, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, Brillas E (2010) Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B Environ 96:361–369.  https://doi.org/10.1016/j.apcatb.2010.02.033 CrossRefGoogle Scholar
  24. Kimmel EC, Casida JE, Ruzo LO (1986) Formamidine insecticides and chloroacetanilide herbicides: disubstituted anilines and nitrosobenzenes as mammalian metabolites and bacterial mutagens. J Agric Food Chem 34:157–161.  https://doi.org/10.1021/jf00068a002 CrossRefGoogle Scholar
  25. Lanzarini-Lopes M, Garcia-Segura S, Hristovski K, Westerhoff P (2017) Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode. Chemosphere 188:304–311.  https://doi.org/10.1016/j.chemosphere.2017.08.145 CrossRefGoogle Scholar
  26. Li D, Gao Q, Xu L, Pang S, Liu Z, Wang C, Tan W (2016) Characterization of glutathione S-transferases in the detoxification of metolachlor in two maize cultivars of differing herbicide tolerance. Pestic Biochem Physiol 143:265–271.  https://doi.org/10.1016/j.pestbp.2016.12.003 CrossRefGoogle Scholar
  27. Liu H, Huang R, Xie F, Zhang S, Shi J (2012) Enantioselective phytotoxicity of metolachlor against maize and rice roots. J Hazard Mater 217–218:330–337.  https://doi.org/10.1016/j.jhazmat.2012.03.037 CrossRefGoogle Scholar
  28. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59.  https://doi.org/10.1016/j.cattod.2009.06.018 CrossRefGoogle Scholar
  29. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407.  https://doi.org/10.1021/acs.chemrev.5b00361 CrossRefGoogle Scholar
  30. Mendy A, Thiaré DD, Sambou S, Khonté A, Coly A, Gaye-Seye MD, Delattre F, Tine A (2016) New method for the determination of metolachlor and buprofezin in natural water using orthophthalaldehyde by thermochemically-induced fluorescence derivatization (TIFD). Talanta 151:202–208.  https://doi.org/10.1016/j.talanta.2016.01.036 CrossRefGoogle Scholar
  31. Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B Environ 142–143:877–890.  https://doi.org/10.1016/j.apcatb.2013.03.023 CrossRefGoogle Scholar
  32. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B Environ 202:217–261.  https://doi.org/10.1016/j.apcatb.2016.08.037 CrossRefGoogle Scholar
  33. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227.  https://doi.org/10.1016/j.chemosphere.2017.12.195 CrossRefGoogle Scholar
  34. Orge CA, Pereira MFR, Faria JL (2017) Photocatalytic-assisted ozone degradation of metolachlor aqueous solution. Chem Eng J 318:247–253.  https://doi.org/10.1016/j.cej.2016.06.136 CrossRefGoogle Scholar
  35. Oturan N, Hamza M, Ammar S, Abdelhédi R, Oturan MA (2011) Oxidation/mineralization of 2-nitrophenol in aqueous medium by electrochemical advanced oxidation processes using Pt/carbon-felt and BDD/carbon-felt cells. J Electroanal Chem 661:66–71.  https://doi.org/10.1016/j.jelechem.2011.07.017 CrossRefGoogle Scholar
  36. Oturan N, Brillas E, Oturan MA (2012) Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10:165–170.  https://doi.org/10.1007/s10311-011-0337-z CrossRefGoogle Scholar
  37. Özcan A, Oturan MA, Oturan N, Şahin Y (2009) Removal of acid Orange 7 from water by electrochemically generated Fenton’s reagent. J Hazard Mater 163:1213–1220.  https://doi.org/10.1016/j.jhazmat.2008.07.088 CrossRefGoogle Scholar
  38. Panizza M, Cerisola G (2009) Electro-Fenton degradation of synthetic dyes. Water Res 43:339–344.  https://doi.org/10.1016/j.watres.2008.10.028 CrossRefGoogle Scholar
  39. Panizza M, Oturan MA (2011) Degradation of alizarin red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56:7084–7087.  https://doi.org/10.1016/j.electacta.2011.05.105 CrossRefGoogle Scholar
  40. Pipi ARF, Sirés I, De Andrade AR, Brillas E (2014) Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere 109:49–55.  https://doi.org/10.1016/j.chemosphere.2014.03.006 CrossRefGoogle Scholar
  41. Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205:187–204.  https://doi.org/10.1007/s11270-009-0065-1 CrossRefGoogle Scholar
  42. Pratap K, Lemley AT (1994) Electrochemical peroxide treatment of aqueous herbicide solutions. J Agric Food Chem 42:209–215.  https://doi.org/10.1021/jf00037a038 CrossRefGoogle Scholar
  43. Pratap K, Lemley AT (1998) Fenton electrochemical treatment of aqueous atrazine and metolachlor. J Agric Food Chem 46:3285–3291.  https://doi.org/10.1021/jf9710342 CrossRefGoogle Scholar
  44. Restivo J, órfão JJM, Armenise S et al (2012) Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. J Hazard Mater 239–240:249–256.  https://doi.org/10.1016/j.jhazmat.2012.08.073 CrossRefGoogle Scholar
  45. Restivo J, Garcia-Bordejé E, Órfão JJM, Pereira MFR (2016) Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants. Chem Eng J 293:102–111.  https://doi.org/10.1016/j.cej.2016.02.055 CrossRefGoogle Scholar
  46. Ruiz EJ, Arias C, Brillas E, Hernández-Ramírez A, Peralta-Hernández JM (2011) Mineralization of acid yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere 82:495–501.  https://doi.org/10.1016/j.chemosphere.2010.11.013 CrossRefGoogle Scholar
  47. Salazar R, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye disperse blue 3. Appl Catal B Environ 115–116:107–116.  https://doi.org/10.1016/j.apcatb.2011.12.026 CrossRefGoogle Scholar
  48. Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B Environ 72:382–394.  https://doi.org/10.1016/j.apcatb.2006.11.016 CrossRefGoogle Scholar
  49. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367.  https://doi.org/10.1007/s11356-014-2783-1 CrossRefGoogle Scholar
  50. Skoumal M, Arias C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E (2008) Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes. Chemosphere 71:1718–1729.  https://doi.org/10.1016/j.chemosphere.2007.12.029 CrossRefGoogle Scholar
  51. Skoumal M, Rodríguez RM, Cabot PL, Centellas F, Garrido JA, Arias C, Brillas E (2009) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta 54:2077–2085.  https://doi.org/10.1016/j.electacta.2008.07.014 CrossRefGoogle Scholar
  52. Sopaj F, Oturan N, Pinson J, Podvorica F, Oturan MA (2016) Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine. Appl Catal B Environ 199:331–341.  https://doi.org/10.1016/j.apcatb.2016.06.035 CrossRefGoogle Scholar
  53. Steter JR, Brillas E, Sirés I (2018) Solar photoelectro-Fenton treatment of a mixture of parabens spiked into secondary treated wastewater effluent at low input current. Appl Catal B Environ 224:410–418.  https://doi.org/10.1016/j.apcatb.2017.10.060 CrossRefGoogle Scholar
  54. Thiam A, Zhou M, Brillas E, Sirés I (2014) Two-step mineralization of tartrazine solutions: study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Appl Catal B Environ 150–151:116–125.  https://doi.org/10.1016/j.apcatb.2013.12.011 CrossRefGoogle Scholar
  55. Thiam A, Brillas E, Garrido JA, Rodríguez RM, Sirés I (2016) Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Appl Catal B Environ 180:227–236.  https://doi.org/10.1016/j.apcatb.2015.06.039 CrossRefGoogle Scholar
  56. Vasudevan S, Oturan MA (2014) Electrochemistry: as cause and cure in water pollution—an overview. Environ Chem Lett 12:97–108.  https://doi.org/10.1007/s10311-013-0434-2 CrossRefGoogle Scholar
  57. Villegas-Guzman P, Hofer F, Silva-Agredo J, Torres-Palma RA (2017) Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton. Environ Sci Pollut Res 24:28175–28189.  https://doi.org/10.1007/s11356-017-0404-5 CrossRefGoogle Scholar
  58. White PM, Potter TL, Culbreath AK (2010) Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics. Sci Total Environ 408:1393–1402.  https://doi.org/10.1016/j.scitotenv.2009.11.012 CrossRefGoogle Scholar
  59. Wilson RI, Mabury SA (2000) Photodegradation of metolachlor: isolation, identification, and quantification of monochloroacetic acid. J Agric Food Chem 48:944–950.  https://doi.org/10.1021/jf990618w CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa Institucional de Fomento a la I+D+iUniversidad Tecnológica MetropolitanaSan Joaquín, SantiagoChile
  2. 2.Laboratorio de Electroquímica del MedioAmbiente, LEQMA, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations