Environmental Science and Pollution Research

, Volume 26, Issue 3, pp 2455–2463 | Cite as

Characterization of blaNDM-harboring, multidrug-resistant Enterobacteriaceae isolated from seafood

  • Uday Narayan Das
  • Asem Sanjit Singh
  • Manjusha Lekshmi
  • Binaya Bhusan Nayak
  • Sanath KumarEmail author
Research Article


Carbapenem-resistant Enterobacteriaceae (CRE) have evolved into a major challenge to antibiotic therapy worldwide. The problem is more confounding when wider dissemination of CRE occurs in the community and the environment. In this study, six blaNDM-harboring Enterobacteriaceae, four Klebsiella pneumoniae, and two Escherichia coli, isolated from seafood, were characterized with respect to their antibiotic resistance and the genetic factors responsible for these resistances. The isolates were resistant to all β-lactam antibiotics, quinolones, trimethoprim–sulfamethoxazole, chloramphenicol, and tetracycline and were susceptible to colistin, polymixin B, fosfomycin, and tigecycline. Four isolates harbored New Delhi metallo β-lactamase (blaNDM-5 genes, while one isolate each harbored blaNDM-1 and blaNDM-2 genes, respectively. The blaNDM genes in all the isolates were flanked by an upstream, truncated ISAba125, and downstream bleMBL-trpF genes. Conjugation experiments showed that the NDM plasmids were readily transmissible. Further, the two blaNDM-positive E. coli isolates belonged to the multidrug-resistant ST131 clone. This study highlights the growing danger of seafood as carriers of multidrug-resistant bacteria leading to their wider dissemination in the community.


blaNDM Escherichia coli Klebsiella pneumoniae MDR Enterobacteriaceae Seafood 



Authors thank the Director of ICAR-CIFE Mumbai for help and support. Authors are grateful to Prof. George A. Jacoby and Dr. Xavier Alexander for E. coli J53 strain used in this study and to Dr. Manuel F. Varela, ENMU, Portales, USA, for the kind help with the manuscript.

Funding information

This research was funded by an institutional research grant CIFE-2012/9.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahmad N, Khalid S, Ali SM, Khan AU (2018) Occurrence of bla NDM variants among Enterobacteriaceae from a neonatal intensive care unit in a northern India hospital. Front Microbiol 9:407CrossRefGoogle Scholar
  2. Biedenbach D, Bouchillon S, Hackel M, Hoban D, Kazmierczak K, Hawser S, Badal R (2015) Dissemination of NDM metallo-β-lactamase genes among clinical isolates of Enterobacteriaceae collected during the SMART global surveillance study from 2008 to 2012. Antimicrob Agents Chemother 59:826–830CrossRefGoogle Scholar
  3. Bora A, Ahmed GU, Hazarika NK, Prasad KN, Shukla SK, Randhawa V, Sarma JB (2013) Incidence of bla NDM-1 gene in Escherichia coli isolates at a tertiary care referral hospital in Northeast India. Indian J Med Microbiol 31:250–256CrossRefGoogle Scholar
  4. Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976CrossRefGoogle Scholar
  5. Clermont O, Dhanji H, Upton M, Gibreel T, Fox A, Boyd D, Mulvey MR, Nordmann P, Ruppe E, Sarthou JL, Frank T, Vimont S, Arlet G, Branger C, Woodford N, Denamur E (2009) Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 64:274–277CrossRefGoogle Scholar
  6. Clermont O, Glodt J, Burdet C, Pognard D, Lefort A, Branger C, Denamur E, COLIBAFI Group Members (2013) Complexity of Escherichia coli bacteremia pathophysiology evidenced by comparison of isolates from blood and portal of entry within single patients. Int J Med Microbiol 303:529–532CrossRefGoogle Scholar
  7. CLSI (2009) Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement M100-S19. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  8. Devarajan N, Köhler T, Sivalingam P, van Delden C, Mulaji CK, Mpiana PT, Ibelings BW, Poté J (2017) Antibiotic resistant Pseudomonas spp. in the aquatic environment: a prevalence study under tropical and temperate climate conditions. Water Res 115:256–265CrossRefGoogle Scholar
  9. Drawz SM, Papp-Wallace KM, Bonomo RA (2014) New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 58:1835–1846CrossRefGoogle Scholar
  10. Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L (2003) Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 47:3724–3732CrossRefGoogle Scholar
  11. Fiett J, Baraniak A, Izdebski R, Sitkiewicz I, Żabicka D, Meler A, Filczak K, Hryniewicz W, Gniadkowski M (2014) The first NDM metallo-β-lactamase-producing Enterobacteriaceae isolate in Poland: evolution of IncFII-type plasmids carrying the bla (NDM-1) gene. Antimicrob Agents Chemother 58:1203–1207CrossRefGoogle Scholar
  12. Frère J-M, Galleni M, Bush K, Dideberg O (2005) Is it necessary to change the classification of {beta}-lactamases? J Antimicrob Chemother 55:1051–1053CrossRefGoogle Scholar
  13. Ghatak S, Singha A, Sen A, Guha C, Ahuja A, Bhattacharjee U, Das S, Pradhan NR, Puro K, Jana C, Dey TK, Prashantkumar KL, Das A, Shakuntala I, Biswas U, Jana PS (2013) Detection of New Delhi metallo-beta-lactamase and extended-spectrum beta-lactamase genes in Escherichia coli isolated from mastitic milk samples. Transbound Emerg Dis 60:385–389CrossRefGoogle Scholar
  14. Hornsey M, Phee L, Wareham DW (2011) A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob Agents Chemother 55:5952–5954CrossRefGoogle Scholar
  15. Huang T-W, Wang J-T, Lauderdale T-L, Liao TL, Lai JF, Tan MC, Lin AC, Chen YT, Tsai SF, Chang SC (2013) Complete sequences of two plasmids in a bla NDM-1-positive Klebsiella oxytoca isolate from Taiwan. Antimicrob Agents Chemother 57:4072–4076CrossRefGoogle Scholar
  16. Inamasu J, Ishikawa K, Oheda M, Nakae S, Hirose Y, Yoshida S (2016) Intrathecal administration of colistin for meningitis due to New Delhi metallo-β-lactamase 1(NDM-1)-producing Klebsiella pneumoniae. J Infect Chemother Off J Jpn Soc Chemother 22:184–186CrossRefGoogle Scholar
  17. Isozumi R, Yoshimatsu K, Yamashiro T, Hasebe F, Nguyen BM, Ngo TC, Yasuda SP, Koma T, Shimizu K, Arikawa J (2012) bla (NDM-1)-positive Klebsiella pneumoniae from environment, Vietnam. Emerg Infect Dis 18:1383–1385CrossRefGoogle Scholar
  18. Khajuria A, Praharaj AK, Kumar M, Grover N (2013) Emergence of NDM-1 in the clinical isolates of Pseudomonas aeruginosa in India. J Clin Diagn Res JCDR 7:1328–1331Google Scholar
  19. Khalifa HO, Soliman AM, Ahmed AM et al (2016) NDM-4- and NDM-5-producing Klebsiella pneumoniae coinfection in a 6-month-old infant. Antimicrob Agents Chemother 60:4416–4417CrossRefGoogle Scholar
  20. Khan AU, Maryam L, Zarrilli R (2017) Structure, genetics and worldwide spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 17:101CrossRefGoogle Scholar
  21. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602CrossRefGoogle Scholar
  22. Lekshmi M, Ammini P, Kumar S, Varela MF (2017) The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms 5.
  23. Liu Z, Li J, Wang X, Liu D, Ke Y, Wang Y, Shen J (2018) Novel variant of New Delhi Metallo-β-lactamase, NDM-20, in Escherichia coli. Front Microbiol 9:248CrossRefGoogle Scholar
  24. Mabilat C, Goussard S (1993) PCR detection and identification of genes for extended spectrum beta-lactamase. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, pp 553–563, Washington, DCGoogle Scholar
  25. Nakano R, Nakano A, Hikosaka K, Kawakami S, Matsunaga N, Asahara M, Ishigaki S, Furukawa T, Suzuki M, Shibayama K, Ono Y (2014) First report of metallo-β-lactamase NDM-5-producing Escherichia coli in Japan. Antimicrob Agents Chemother 58:7611–7612CrossRefGoogle Scholar
  26. Nordmann P, Poirel L (2005) Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother 56:463–469. CrossRefGoogle Scholar
  27. Nordmann P, Naas T, Poirel L (2011a) Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798CrossRefGoogle Scholar
  28. Nordmann P, Poirel L, Carrër A et al (2011b) How to detect NDM-1 producers. J Clin Microbiol 49:718–721CrossRefGoogle Scholar
  29. Nordmann P, Poirel L, Walsh TR, Livermore DM (2011c) The emerging NDM carbapenemases. Trends Microbiol 19:588–595CrossRefGoogle Scholar
  30. Poirel L, Benouda A, Hays C, Nordmann P (2011a) Emergence of NDM-1-producing Klebsiella pneumoniae in Morocco. J Antimicrob Chemother 66:2781–2783CrossRefGoogle Scholar
  31. Poirel L, Dortet L, Bernabeu S, Nordmann P (2011b) Genetic features of bla NDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother 55:5403–5407CrossRefGoogle Scholar
  32. Queenan AM, Bush K (2007) Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20:440–458CrossRefGoogle Scholar
  33. Rasheed JK, Jay C, Metchock B, Berkowitz F, Weigel L, Crellin J, Steward C, Hill B, Medeiros AA, Tenover FC (1997) Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother 41:647–653CrossRefGoogle Scholar
  34. Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC (2006) qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother 50:2872–2874CrossRefGoogle Scholar
  35. Rogers BA, Sidjabat HE, Paterson DL (2011) Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 66:1–14CrossRefGoogle Scholar
  36. Sambrook J, Fritsch E, Maniatis T (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, NYGoogle Scholar
  37. Singh AS, Lekshmi M, Nayak BB, Kumar SH (2016) Isolation of Escherichia coli harboring bla NDM-5 from fresh fish in India. J Microbiol Immunol Infect 49:822–823CrossRefGoogle Scholar
  38. Singh AS, Lekshmi M, Prakasan S et al (2017) Multiple antibiotic-resistant, extended spectrum-β-lactamase (ESBL)-producing Enterobacteria in fresh seafood. Microorganisms 5(3).
  39. Teo J, Ngan G, Balm M, Jureen R, Krishnan P, Lin R (2012) Molecular characterization of NDM-1 producing Enterobacteriaceae isolates in Singapore hospitals. West Pac Surveill Response J WPSAR 3:19–24CrossRefGoogle Scholar
  40. Tran JH, Jacoby GA (2002) Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A 99:5638–5642CrossRefGoogle Scholar
  41. Ulu AC, Gökmen TG, Kibar F et al (2017) Molecular epidemiology of carbapenem-resistant Klebsiella pneumonia at a Turkish Center: is the increase of resistance a threat for Europe? J Glob Antimicrob Resist 11:10–16. CrossRefGoogle Scholar
  42. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L, Galanakis C, Reid-Smith RJ, Tellier PP, Tellis PA, Ziebell K, Manges AR (2010) Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 16:88–95CrossRefGoogle Scholar
  43. Wailan AM, Paterson DL, Kennedy K et al (2015) Genomic characteristics of NDM-producing Enterobacteriaceae isolates in Australia and their bla NDM genetic contexts. Antimicrob Agents Chemother 60:136–141CrossRefGoogle Scholar
  44. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362CrossRefGoogle Scholar
  45. Wang Y, Wu C, Zhang Q, Qi J, Liu H, Wang Y, He T, Ma L, Lai J, Shen Z, Liu Y, Shen J (2012) Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS One 7:e37152CrossRefGoogle Scholar
  46. Wei W-J, Yang H-F, Ye Y, Li J-B (2015) New Delhi metallo-β-lactamase-mediated carbapenem resistance: origin, diagnosis, treatment and public health concern. Chin Med J 128:1969–1976CrossRefGoogle Scholar
  47. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.QC Laboratory, Post Harvest Technology DepartmentICAR-Central Institute of Fisheries Education (CIFE)MumbaiIndia

Personalised recommendations