Relationship between cadmium content in semen and male infertility: a meta-analysis
- 63 Downloads
Abstract
Meta-analysis with high-quality studies can provide superior evidence. In this paper, we use meta-analysis to analyze the relationship between cadmium (Cd) content in semen and male infertility, and then objectively evaluate the effect of Cd on sperm quality. The objectives of this study were to update our understanding of infertility and to provide evidence to treat and prevent the infertility. We searched potentially relevant studies that were published from establishing database data to April 2018. Articles came from the databases of CNKI, Wanfang, VIP, PubMed, CMCI, and EMBASE. A total of 11 articles were included. We gathered the mean and variance of the infertility group and the control group to compare the Cd content in two groups. In total, the 11 studies include 1707 subjects, 1093 of which were in the infertility group and 614 of which were in the control group. We can get some information from this meta-analysis: SMD = 0.50 (95% Cl 0.39–0.61), Z = 8.92, P < 0.05; the funnel plot of the meta-analysis shows incomplete symmetry, which may have the publication bias. Therefore, the high content of Cd in semen is a causative factor of infertility. The Cd content in semen can be used as an indicator of sperm quality.
Keywords
Infertility Cadmium Meta-analysis SemenNotes
Acknowledgments
The authors thank Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine.
Funding
This study was supported by the National Natural Science Foundation of China (Grant No. 31472161).
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflicts of interest.
References
- Agarwal A, Makker K, Sharma R (2010) Review article: clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2–11. https://doi.org/10.1111/j.1600-0897.2007.00559.x CrossRefGoogle Scholar
- Bataineh H, Al-Hamood MH, Elbetieha A, Bani HI (1997) Effect of long-term ingestion of chromium compounds on aggression, sex behavior and fertility in adult male rat. Drug Chem Toxicol 20:133–149. https://doi.org/10.3109/01480549709003875 CrossRefGoogle Scholar
- Bulat ZP, Dukic-Cosic D, Dokic M, Bulat P, Matovic V (2009) Blood and urine cadmium and bioelements profile in nickel-cadmium battery workers in Serbia. Toxicol Ind Health 25:129–135CrossRefGoogle Scholar
- Chandler J, Hopewell S (2013) Cochrane methods--twenty years experience in developing systematic review methods. Syst Rev 2:76CrossRefGoogle Scholar
- Chen T et al. (2009) Correlation of trace elements with male infertility. Chin J Health Lab Technol 155–156Google Scholar
- Chen M, Li X, Fan R, Yang J, Jin X, Hamid S, Xu S (2018) Cadmium induces BNIP3-dependent autophagy in chicken spleen by modulating miR-33-AMPK axis. Chemosphere 194:396–402. https://doi.org/10.1016/j.chemosphere.2017.12.026 CrossRefGoogle Scholar
- Chia SE, Ong CN, Lee ST, Tsakok FHM (1992) Blood concentrations of lead, cadmium, mercury, zinc, and copper and human semen parameters. Arch Androl 29:177–183. https://doi.org/10.3109/01485019208987722 CrossRefGoogle Scholar
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. https://doi.org/10.1016/0197-2456(86)90046-2 CrossRefGoogle Scholar
- Desai N, Sharma RK (2009) Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril 92:1626–1631. https://doi.org/10.1016/j.fertnstert.2008.08.109 CrossRefGoogle Scholar
- Du PS, Cabler S, Mcalister DA, Sabanegh E, Agarwal A (2010) The effect of obesity on sperm disorders and male infertility. Nat Rev Urol 7:153–161. https://doi.org/10.1038/nrurol.2010.6 CrossRefGoogle Scholar
- Frühmesser A, Vogt PH, Zimmer J, Witsch-Baumgartner M, Fauth C, Zschocke J, Pinggera GM, Kotzot D (2013) Single nucleotide polymorphism array analysis in men with idiopathic azoospermia or oligoasthenozoospermia syndrome. Fertil Steril 100:81–87. https://doi.org/10.1016/j.fertnstert.2013.03.016 CrossRefGoogle Scholar
- HM V et al (2014) Meta-analysis of data from animal studies: a practical guide. J Neurosci Methods 221:92–102. https://doi.org/10.1016/j.jneumeth.2013.09.010 CrossRefGoogle Scholar
- Ho HY, Wei HJ (2013) The relationship between heavy metal exposure and risk of infertility in Taiwan. Fertil Steril 100:S12–S12. https://doi.org/10.1016/j.fertnstert.2013.07.160 CrossRefGoogle Scholar
- Hovatta O, Venäläinen ER, Kuusimäki L, Heikkilä J, Hirvi T, Reima I (1998) Aluminium, lead and cadmium concentrations in seminal plasma and spermatozoa, and semen quality in Finnish men. Hum Reprod 13:115–119. https://doi.org/10.1093/humrep/13.1.115 CrossRefGoogle Scholar
- Keck C, Bramkamp G, Behre HM, Müller C, Jockenhövel F, Nieschlag E (1995) Lack of correlation between cadmium in seminal plasma and fertility status of nonexposed individuals and two cadmium-exposed patients. Reprod Toxicol 9(35):35–40. https://doi.org/10.1016/0890-6238(94)00053-Y CrossRefGoogle Scholar
- Keene DJ, Sajad Y, Rakoczy G, Cervellione RM (2012) Testicular volume and semen parameters in patients aged 12 to 17 years with idiopathic varicocele. J Pediatr Surg 47:383–385. https://doi.org/10.1016/j.jpedsurg.2011.11.035 CrossRefGoogle Scholar
- Kefer JC, Agarwal A, Sabanegh E (2010) Role of antioxidants in the treatment of male infertility. Int J Urol 16:449–457. https://doi.org/10.1111/j.1442-2042.2009.02280.x CrossRefGoogle Scholar
- Kitamura A, Miyauchi N, Hamada H, Hiura H, Chiba H, Okae H, Sato A, John RM, Arima T (2015) Epigenetic alterations in sperm associated with male infertility. Congenit Anom 55:133–144. https://doi.org/10.1111/cga.12113 CrossRefGoogle Scholar
- Laskey JW, Rehnberg GL, Laws SC, Hein JF (1986) Age-related dose response of selected reproductive parameters to acute cadmium chloride exposure in the male long〦vans rat. J Toxicol Environ Health 19:393–401. https://doi.org/10.1080/15287398609530937 CrossRefGoogle Scholar
- Li X, Xing M, Chen M, Zhao J, Fan R, Zhao X, Cao C, Yang J, Zhang Z, Xu S (2017) Effects of selenium-lead interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils. Ecotoxicol Environ Saf 139:447–453. https://doi.org/10.1016/j.ecoenv.2017.02.017 CrossRefGoogle Scholar
- Liu J (1986) Studies in technic of cryopreservation for human spermatozoa by liquid nitrogen vapor——I. Effects on sperm survival rate of different methods of storage and different times of cold—balance. doi: https://doi.org/10.13361/j.qdyxy.1986.04.003
- Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447. https://doi.org/10.1016/j.jhazmat.2006.09.057 CrossRefGoogle Scholar
- Lotti F, Maggi M (2018) Sexual dysfunction and male infertility. Nat Rev Urol 15:287–307. https://doi.org/10.1038/nrurol.2018.20 CrossRefGoogle Scholar
- Meerpohl JJ, Timmer A, Antes G (2008) Evidence-based medicine and systematic reviews. Mmw Fortschr Med 150:41–43. https://doi.org/10.1007/BF03365424
- Mendiola J, Moreno JM, Roca M, Vergara-Juárez N, Martínez-García MJ, García-Sánchez A, Elvira-Rendueles B, Moreno-Grau S, López-Espín JJ, ten J, Bernabeu R, Torres-Cantero AM (2011) Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: a pilot study. Environ Health 10:6. https://doi.org/10.1186/1476-069X-10-6 CrossRefGoogle Scholar
- Oguzturk H, Ciftci O, Aydin M, Timurkaan N, Beytur A, Yilmaz F (2012) Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats. Andrologia 44:243–249. https://doi.org/10.1111/j.1439-0272.2012.01273.x CrossRefGoogle Scholar
- Ponnapakkam TP, Bailey KS, Graves KA, Iszard MB (2003) Assessment of male reproductive system in the CD-1 mice following oral manganese exposure. Reprod Toxicol 17:547–551. https://doi.org/10.1016/S0890-6238(03)00101-1 CrossRefGoogle Scholar
- Pritts EA, Parker WH, Olive DL (2009) Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril 91:1215–1223. https://doi.org/10.1016/j.fertnstert.2008.01.051 CrossRefGoogle Scholar
- Saaranen M, Kantola M, Saarikoski S, Vanha-Perttula T (1989) Human seminal plasma cadmium: comparison with fertility and smoking habits. Andrologia 21:140–145CrossRefGoogle Scholar
- Saglam HS, Altundag H, Atik YT, Dundar MS, Adsan O (2015) Trace elements levels in the serum, urine, and semen of patients with infertility. Turk J Med Sci 45:443–448CrossRefGoogle Scholar
- Sakai S, Wakasugi T, Yagi K, Ohnishi A, Ito N, Takeda Y, Yamagishi M (2011) Successful pregnancy and delivery in a patient with adult GH deficiency: role of GH replacement therapy. Endocr J 58:65–68. https://doi.org/10.1507/endocrj.K10E-208 CrossRefGoogle Scholar
- Salort-Llorca C, Mínguez-Serra MP, Silvestre FJ (2008) Drug-induced burning mouth syndrome: a new etiological diagnosis. Med Oral Patol Oral Cir Bucal 13:E167–E170Google Scholar
- Semczuk M, Semczuksikora A (2001) New data on toxic metal intoxication (Cd, Pb, and Hg in particular) and Mg status during pregnancy. Med Sci Monit 7:332–340Google Scholar
- Shaoxian L et al. (1994) Determination of eight elements in semen of infertile patients and normal persons and analysis of zinc to cadmium ratio. J Reprod Med 84–86Google Scholar
- Telisman S, Cvitković P, Jurasović J, Pizent A, Gavella M, Rocić B (2000) Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect 108:45–53. https://doi.org/10.1289/ehp.0010845 CrossRefGoogle Scholar
- Wirth JJ, Mijal RS (2010) Adverse effects of low level heavy metal exposure on male reproductive function. Syst Biol Reprod Med 56:147–167. https://doi.org/10.3109/19396360903582216 CrossRefGoogle Scholar
- Wittmaack FM, Shapiro SS (1992) Longitudinal study of semen quality in Wisconsin men over one decade. Wis Med J 91:477Google Scholar
- Xiaojia W, Ziming H, Chunli L (1995) Analysis of trace elements zinc, copper, lead and cadmium in human semen. Reprod Contracept 393–395Google Scholar
- Xu Z (2012) Detection and analysis of trace elements of seminal plasma in male infertility. Hainan Med J. https://doi.org/10.3969/j.issn.1003-6350.2012.03.039
- Yang Y, Liu H, Xiang XH, Liu FY (2013) Outline of occupational chromium poisoning in China. Bull Environ Contam Toxicol 90:742–749. https://doi.org/10.1007/s00128-013-0998-3 CrossRefGoogle Scholar
- Zheng L, Zhu X, Qin J, Ma N, Luo K (2012) Correlation between sperm quality and trace elements in infertile patients international. J Lab Med 33:659–660. https://doi.org/10.3969/j.issn.1673-4130.2012.06.009 Google Scholar