Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 2013–2021 | Cite as

An insight into the cytotoxicity, genotoxicity, and mutagenicity of smoked cigarette butt leachate by using Allium cepa as test system

  • Mateus Flores Montalvão
  • Lorrana Lucas Gomes Sampaio
  • Huan Henrique Ferreira Gomes
  • Guilherme MalafaiaEmail author
Short Research and Discussion Article


Smoked cigarette butt (SCB) discharged in the environment became an issue of unknown consequences for plants. Thus, we aim at assessing the impact of water containing SBC leachate on the meristem cells of Allium cepa roots. We defined the following experimental groups: negative control (water), positive control (cyclophosphamide); water with SCB leachate at environmental concentration (1.9 μg/L of nicotine) (EC1× group) and water with SCB leachate concentration 1000 times higher than EC1 (EC1000× group). Mitotic index, total number of abnormal cells, index of abnormal cells per mitotic/phase, relative growth index, and inhibition index were calculated after 48 exposure hours. Root meristems were used to prepare slides in order to investigate chromosomal and nuclear abnormalities. According to our data, plants exposed to SCB leachate presented low relative growth index, high inhibition index, large number of abnormal cells, and high abnormality frequency at metaphase/anaphase. The exposed A. cepa recorded a wide variety of abnormalities such as diagonal metaphase/anaphase, metaphase/anaphase presenting chromosome fragments, binucleated cells, displaced nucleus, chromosome bridges, micronuclei, necrotic cells, stick metaphase, chromosome adherence, notched nucleus, among other cell disturbances. The chemicals in the SBC leachate had aneugenic and clastogenic effect on the genetic material of the tested plants, either when they acted individually, synergistically, or additively. Thus, our study is a pioneer in reporting that the mere disposal of cigarette butts in the environment can have cytotoxic, genotoxic, and mutagenic effects on plants.


Cigarette Mutagenic Environmental pollution 



The authors are grateful to CNPq for granting the scholarship to the student who developed the study. Moreover, the authors thank Dr. Ivandilson Pessoa Pinto de Menezes for your help in methodological procedures.

Funding information

This study was financially supported by the Brazilian National Research Council (CNPq) (Brazilian research agency) (Proc. N. 467801/2014-2) and Goiano Federal Institute (Proc. No. 23218.000286/2017-21).


  1. Asaithamby A, Hu B, Chen DJ (2011) Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci U S A 108(20):8293–8298. CrossRefGoogle Scholar
  2. Bekele TT (2016) Investigation of toxicity of cigarette butts collected in Addis Ababa to Swiss albino mice (thesis). Addis Ababa University School of Graduate Studies, Department of Biochemistry, Addis Ababa, EthiopiaGoogle Scholar
  3. Bonanomi G, Incerti G, Cesarano G, Gaglione AS, Lanzotti V (2015) Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR. PLoS One, 10(1):e0117393Google Scholar
  4. Booth DJ, Gribben P, Parkinson K (2015) Impact of cigarette butt leachate on tidepool snails. Mar Pollut Bull 95(1):362–364. CrossRefGoogle Scholar
  5. Caetano MO, Kieling AG, Raimondi RL, Gomes LP, Schneider IAH (2018) Ecotoxicity tests with Allium cepa to determine the efficiency of rice husk ash in the treatment of groundwater contaminated with benzene, toluene, ethylbenzene, and xylene. Environ Sci Pollut Res Int.
  6. Cardoso LS, Estrela FN, Chagas TQ, da Silva WAM, Costa DRO, Pereira I, Vaz BG, Rodrigues ASL, Malafaia G (2018) The exposure to water with cigarette residue changes the anti-predator response in female Swiss albino mice. Environ Sci Pollut Res Int 25(9):8592–8607. CrossRefGoogle Scholar
  7. Celik TA, Aslantürk ÖS (2010) Evaluation of cytotoxicity and genotoxicity of Inula viscosa leaf extracts with Allium test. J Biomed Biotechnol 2010:189252Google Scholar
  8. Centeno AJ (1990) Curso de estatística aplicada à biologia. Cegraf-UFG, GoiâniaGoogle Scholar
  9. Chandra S, Chauhan LKS, Murthy RC, Saxena PN, Pande PN, Gupta SK (2005) Comparative biomonitoring of leachates from hazardous solid waste of two industries using Allium test. Sci Total Environ 347:46–52CrossRefGoogle Scholar
  10. Fatima RA, Ahmad M (2006) Genotoxicity of industrial wastewaters obtained from two different pollution sources in northern India: a comparison of three bioassays. Mutat Res 609:81–91CrossRefGoogle Scholar
  11. Fenech M (2002) Biomarkers of genetic damage for cancer epidemiology. Toxicology 181–182:411–416CrossRefGoogle Scholar
  12. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol 88(3):252–259CrossRefGoogle Scholar
  13. Fiskesjö G (1993) Technical methods section. Allium test I: a 2-3 day plant test for toxicity assessment by measuring the mean root growth of onions (Allium cepa L.). Environ Toxicol Water Qual: Int J 8:461–470CrossRefGoogle Scholar
  14. Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5(5):525–532CrossRefGoogle Scholar
  15. Gadano A, Gurni Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pest Biochem Physiol 88:252–259CrossRefGoogle Scholar
  16. Gill H, Rogers K, Rehman B, Moynihan J, Bergey EA (2018) Cigarette butts may have low toxicity to soil-dwelling invertebrates: evidence from a land snail. Sci Total Environ:628, 556–629, 561.
  17. Gomes JV, Teixeira JTS, Lima VM, Borba HR (2015) Induction of cytotoxic and genotoxic effects of Guandu river waters in the Allium cepa system. Ambiente Água 10(1):48–58Google Scholar
  18. Green ALR, Putschew A, Nehls T (2014) Littered cigarette butts as a source of nicotine in urban waters. J Hydrol 519:3466–3474CrossRefGoogle Scholar
  19. Grover IS, Kaur S (1999) Genotoxicity of wastewater samples from sewage and industrial effluent detected by the Allium root anaphase aberration and micronucleus assays. Mutat Res 426(2):183–188CrossRefGoogle Scholar
  20. Guimarães AT, Ferreira RO, Rabelo LM, Silva BC, Souza JM, Silva WA, Menezes IP, Rodrigues AS, Vaz BG, Oliveira Costa DR, Pereira I, Silva AR, Malafaia G (2016) The C57BL/6J mice offspring originated from a parental generation exposed to tannery effluents shows object recognition deficits. Chemosphere 164:593–602. CrossRefGoogle Scholar
  21. Gupta K, Gaumat S, Mishra K (2012) Studies on phyto-genotoxic assessment of tannery effluent and chromium on Allium cepa. J Environ Biol 33(3):557–563Google Scholar
  22. Ibeh OO, Umeham SN (2018) Genotoxicy assessment of three industrial effluents using the Allium cepa bioassay. Afr J Environ Sci Technol 12(3):115–122CrossRefGoogle Scholar
  23. Ibeh OO, Faluyi JO, Dinnie H (2018) Genotoxicity evaluation of a pharmaceutical effluent from Owerri, Nigeria, using the Allium cepa assay. Afr J Environ Sci Technol 5:10–17Google Scholar
  24. Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, Wu W, Guan J, Terzoudi G, Pantelias G (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104(1–4):14–20CrossRefGoogle Scholar
  25. Khanna N, Sharma S (2013) Allium Cepa root chromosomal aberration assay: a review. Indian J Pharm Biol Res 1(3):105–119CrossRefGoogle Scholar
  26. Kirsch-Volders M, Vanhauwaert A, De Boeck M and Decordier L (2002) Importance of detecting numerical versus structural chromosome aberrations. Mutat Res 504:137–148Google Scholar
  27. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621. CrossRefGoogle Scholar
  28. Lawal MS, Ologundudu SO (2013) Toxicity of cigarette filter leachates on Hymenochirus curtipes and Clarias gariepinus in Nigeria. J Environ Ext 11:7–14Google Scholar
  29. Lee W, Lee CC (2015) Developmental toxicity of cigarette butts – an underdeveloped issue. Ecotoxicol Environ Saf 113:362–368CrossRefGoogle Scholar
  30. Leme DM, Marin-Morales MAM (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res Rev Mutat Res 682:71–81CrossRefGoogle Scholar
  31. Matt G, Quintana PJE, Destailats H, Gundel LA, Sleiman M, Singer BC, Jacob P, Benowitz N, Winickoff JP, Rehan V, Talbot P, Schick S, Samet J, Wang Y, Hang B, Martins-Green M, Pankow JF, Hovell MF (2011) Thirdhand tabacco smoke: emerging evidence and arguments for a multidisciplinar research agenda. Environ Health Perspect 119(9):1218–1226CrossRefGoogle Scholar
  32. Migid AHM, Azab YA, Ibrahim WM (2007) Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent. Ecotoxicol Environ Saf 66:57–64CrossRefGoogle Scholar
  33. Missouri Poison Center (2014) Nicotine - acute toxic hazard in E-cigarettes. Available in: Accessed in: 02 April, 2017
  34. Moriwaki H, Kitajima S, Katahira K (2009) Waste on the roadside, ‘poi-sute’ waste: its distribution and elution potential of pollutants into environment. Waste Manag 29:1192–1197CrossRefGoogle Scholar
  35. Novotny TE, Lum K, Smith E, Wang V, Barnes R (2009) Cigarettes butts and the case for an environmental policy on hazardous cigarette waste. Int J Environ Res Public Health 6(5):1691–1705. CrossRefGoogle Scholar
  36. Obute GC, Ekeke C, Izuka DC (2016) Genotoxicity assessment of refined petroleum products and popular local soft drink (Zobo) in daily use in Nigeria. Res J Mutat 6(1):22–30Google Scholar
  37. Osuala FI, Abiodun OA, Igwo-Ezikpe MN, Kemabonta KA, Otitoloju AA (2017) Relative toxicity of cigarette butts leachate and usefulness of antioxidant biomarker activity in Nile tilapia Oreochromis niloticus (Trewavas, 1983). Ethiop J Environ Stud Manage 10(1):75–88Google Scholar
  38. Parker TT, Rayburn J (2017) A comparison of electronic and traditional cigarette butt leachate on the development of Xenopus laevis embryos. Toxicol Rep 4:77–82CrossRefGoogle Scholar
  39. Pavlidis G, Tsihrintzis VA (2018) Environmental benefits and control of pollution to surface water and groundwater by agroforestry systems: a review. Water Resour Manag 32(1):1–29CrossRefGoogle Scholar
  40. Petriccione M, Forte V, Valente D, Ciniglia C (2013) DNA integrity of onion root cells under catechol influence. Environ Sci Pollut Res 20:4859–4871CrossRefGoogle Scholar
  41. Rank J, Nielsen MH (1993) A modified Allium test as a tool in the screening of the genotoxicity of complex mixtures. Hereditas 18:49–53Google Scholar
  42. Rodrigues MA, Kerbauy GB (2009) Meristems: sources of youth and plasticity in plant development. Hoehnea 36(4):525–549CrossRefGoogle Scholar
  43. Roy S, Nagarchi L, Das I, Mangalam-Achuthananthan J, Krishnamurthy S (2015) Cytotoxicity, genotoxicity, and phytotoxicity of tannery effluent discharged into Palar River basin, Tamil Nadu. India J Toxicol 2015:504360. Google Scholar
  44. Schneider S, Gadinger M, Fischer A (2012) Does the effect go up in smoke? A randomized controlled trial of pictorial warnings on cigarette packaging. Patient Educ Couns 86(1):77–83. CrossRefGoogle Scholar
  45. Seco Pon JP, Becherucci ME (2012) Spatial and temporal variations of urban litter in Mar del Plata, the major coastal city of Argentina. Waste Manag 32(2):343–348CrossRefGoogle Scholar
  46. Slaughter E, Gersberg RM, Watanabe K, Rudolph J, Stransky C, Novotny TE (2011) Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tabacco Control 20(Suppl 1):i25–i29CrossRefGoogle Scholar
  47. Suárez-Rodríguez M, Macías Garcia C (2014) There is no such a thing as a free cigarette; lining nests with discarded butts brings short-term benefits, but causes toxic damage. J Evol Biol 27(12):2719–2726. CrossRefGoogle Scholar
  48. Suárez-Rodríguez M, López-Rull I, Garcia CM (2012) Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe? Biol Lett 9(1):20120931. Print 2013 Feb 23CrossRefGoogle Scholar
  49. Talhout R, Schutz T, Florek E, Benthem JV, Wester P, Opperhuizen A (2011) Hazardous compounds in tabacco smoke. Int J Environ Res Public Health 8(2):613–628CrossRefGoogle Scholar
  50. Valcárcel Y, Alonso SG, Rodríguez-Gil JL, Gil A, Catalá M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 84:1336–1348CrossRefGoogle Scholar
  51. Vidakovic-Cifrek Z, Pavlica M, Regula I and Papes D (2002). Cytogenetic damage in shallot (Allium cepa) root meristems induced by oil industry “High-Density Brines”. Archives of Environmental Contamination Toxicology 43:284–291Google Scholar
  52. Wang S, Wang L, Hua W, Zhou M, Wang Q, Zhou Q, Huang X (2015) Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants. Environ Sci Pollut Res Int 22(22):17653–17662. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mateus Flores Montalvão
    • 1
    • 2
  • Lorrana Lucas Gomes Sampaio
    • 2
  • Huan Henrique Ferreira Gomes
    • 1
  • Guilherme Malafaia
    • 1
    • 2
    • 3
    Email author
  1. 1.Post-graduation Program in Cerrado Natural Resource Conservation - Biological Research LaboratoryGoiano Federal InstitutionUrutaíBrazil
  2. 2.Laboratório de Pesquisas BiológicasInstituto Federal GoianoUrutaíBrazil
  3. 3.Post-graduation Program in ChemistryFederal University of GoiásGoiâniaBrazil

Personalised recommendations