Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 1834–1847 | Cite as

Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms

  • Ruiqi Yang
  • Gaosen Zhang
  • Shiweng Li
  • Faegheh Moazeni
  • Yunshi Li
  • Yongna Wu
  • Wei Zhang
  • Tuo ChenEmail author
  • Guangxiu LiuEmail author
  • Binglin Zhang
  • Xiukun Wu
Research Article


This study investigates the biodegradation of crude oil by a mixed culture of bacteria isolated from the Qinghai-Tibet plateau using gas chromatography-mass spectrometer (GC-MS) and the gravimetric method. The results showed that a mixed culture has a stronger ability to degrade hydrocarbon than pure cultures. Once both Nocardia soli Y48 and Rhodococcus erythropolis YF28-1 (8) were present in a culture, the culture demonstrated the highest crude oil removal efficiency of almost 100% after 10 days of incubation at 20 °C. Moreover, further analysis of the degradation mechanisms used by the above strains, which revealed utilization of different n-alkane substrates, indicated the diversity of evolution and variations in different strains, as well as the importance of multiple metabolic mechanisms for alkane degradation. Therefore, it is concluded that a mixed culture of Y48 and YF28-1 (8) strains can provide a more effective method for bioremediation of hydrocarbon-contaminated soil in permafrost regions.


Qinghai-Tibet plateau Crude oil Biodegradation Mixed culture Metabolic enzyme Nocardia soli Rhodococcus erythropolis 


Funding information

This work was financed by the International Scientific and Technological Cooperation Projects of the Ministry of Science and Technology (grant no. 2014DFA30330), China Postdoctoral Science Fund (2014M562477), and the National Natural Science Foundation of China (grant nos. 31570498 and 31500429).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_3718_MOESM1_ESM.pdf (307 kb)
ESM 1 (PDF 306 kb)


  1. AL-Saleh E, Drobiova H, Obuekwe C (2009) Predominant culturable crude oil-degrading bacteria in the coast of Kuwait. Int Biodeterior Biodegrad 63:400–406. CrossRefGoogle Scholar
  2. Amouric A, Quéméneur M, Grossi V, Liebgott P, Auria R, Casalot L (2010) Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. J Appl Microbiol 108:1903–1916CrossRefGoogle Scholar
  3. El Bassi L, Shinzato N, Namihira T, Oku H, Matsui T (2009) Biodegradation of thiodiglycol, a hydrolyzate of the chemical weapon Yperite, by benzothiophene-desulfurizing bacteria. J Hazard Mater 167:124–127. CrossRefGoogle Scholar
  4. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:1–7. CrossRefGoogle Scholar
  5. Bienert S, Waterhouse A, De Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res 45:D313–D319. CrossRefGoogle Scholar
  6. Bihari Z, Szvetnik A, Szabó Z, Blastyák A, Zombori Z, Balázs M, Kiss I (2011) Functional analysis of long-chain n-alkane degradation by Dietzia spp. FEMS Microbiol Lett 316:100–107. CrossRefGoogle Scholar
  7. Brzeszcz J, Kaszycki P (2018) Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 29:359–407. CrossRefGoogle Scholar
  8. Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228. CrossRefGoogle Scholar
  9. Chen Y, Huang J, Li Y, Zeng G, Zhang J, Huang A, Zhang J, Ma S, Tan X, Xu W, Zhou W (2015) Study of the rice straw biodegradation in mixed culture of Trichoderma viride and Aspergillus niger by GC-MS and FTIR. Environ Sci Pollut Res 22:9807–9815. CrossRefGoogle Scholar
  10. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13. Google Scholar
  11. Dutta K, Shityakov S, Das PP, Ghosh C (2017) Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste. 3 Biotech 7:365. CrossRefGoogle Scholar
  12. El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R (2015) “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environ Sci Technol 49:11281–11291CrossRefGoogle Scholar
  13. Filler DM, Kennicutt MC, Snape I, Sweet ST, Klein AG (2015) Arctic and Antarctic spills. In: Fingas M (ed) Handbook of oil spill science and technology. Wiley, Hoboken, pp 495–512Google Scholar
  14. Fuentes S, Barra B, Caporaso JG, Seeger M (2016) From rare to dominant: a fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation. Appl Environ Microbiol 82:888–896CrossRefGoogle Scholar
  15. Ghosh S, Chowdhury R, Bhattacharya P (2016) Mixed consortia in bioprocesses: role of microbial interactions. Appl Microbiol Biotechnol 100:4283–4295. CrossRefGoogle Scholar
  16. Gu HP, Chen YZ, Liu XM, Wang HZ, Jue ST, Wu LS, Zeng LZ, Xu JM (2017) The effective migration of Massilia sp WF1 by Phanerochaete chrysosporium and its phenanthrene biodegradation in soil. Sci Total Environ 593:695–703CrossRefGoogle Scholar
  17. Guarino C, Spada V, Sciarrillo R (2017) Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation-Assistited Landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170:10–16CrossRefGoogle Scholar
  18. Guevara G, Fernández delas Heras L, Perera J, Navarro Llorens JM (2017) Functional differentiation of 3-ketosteroid Δ1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Microb Cell Factories 16:1–16. CrossRefGoogle Scholar
  19. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:162–173. CrossRefGoogle Scholar
  20. Gurav R, Lyu H, Ma J, Tang J, Liu Q, Zhang H (2017) Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environ Sci Pollut Res 24(12):11392–11403. CrossRefGoogle Scholar
  21. Gustafsson MCU, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, Fulco AJ, Cheesman MR, Von Wachenfeldt C, Munro AW (2004) Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry 43:5474–5487. CrossRefGoogle Scholar
  22. Hara A, Baik S, Syutsubo K, Misawa N, Smits THM, van Beilen JB, Harayama S (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197. CrossRefGoogle Scholar
  23. Horváthová H, Lászlová K, Dercová K (2017) Bioremediation of PCB-contaminated shallow river sediments: the efficacy of biodegradation using individual bacterial strains and their consortia. Chemosphere 193:270–277. CrossRefGoogle Scholar
  24. Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598CrossRefGoogle Scholar
  25. Jafarinejad S (2017) Pollutions and wastes from the petroleum industry. Petroleum waste treatment and pollution control. Butterworth-Heinemann, pp 19–83.
  26. Jain K, Shah V, Chapla D, Madamwar D (2012) Decolorization and degradation of azo dye-Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. J Hazard Mater 213-214:378–386. CrossRefGoogle Scholar
  27. Jin HJ, Yu QH, Wang SL, Lü LZ (2008) Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Reg Sci Technol 53:317–333. CrossRefGoogle Scholar
  28. Kamyabi A, Nouri H, Moghimi H (2017) Synergistic effect of Sarocladium sp. and Cryptococcus sp. co-culture on crude oil biodegradation and biosurfactant production. Appl Biochem Biotechnol 182:324–334CrossRefGoogle Scholar
  29. Kang HJ, Lee SY, Roh JY, Yim UH, Shim WJ, Kwon JH (2014) Prediction of ecotoxicity of heavy crude oil: contribution of measured components. Environ Sci Technol 48:2962–2970. CrossRefGoogle Scholar
  30. Kharusi SA, Abed RMM, Dobretsov S (2016) EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and nonbioaugmented oil-contaminated desert soils. Chemosphere 147:279–286CrossRefGoogle Scholar
  31. Kim J, Lee AH, Chang W (2018) Enhanced bioremediation of nutrient-amended, petroleum hydrocarbon-contaminated soils over a cold-climate winter: the rate and extent of hydrocarbon biodegradation and microbial response in a pilot-scale biopile subjected to natural seasonal freeze-thaw temperatures. Sci Total Environ 612:903–913. CrossRefGoogle Scholar
  32. Kong FX, Sun GD, Liu ZP (2018) Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: performance and mechanism. Chemosphere 198:83–91. CrossRefGoogle Scholar
  33. Kraakman NJR, Rocha-Rios J, van Loosdrecht MCM (2011) Review of mass transfer aspects for biological gas treatment. Appl Microbiol Biotechnol 91:873–886CrossRefGoogle Scholar
  34. Kumari S, Regar RK, Manickam N (2018) Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour Technol 254:174–179. CrossRefGoogle Scholar
  35. LaRoe SL, Fricker AD, Bedard DL (2014) Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination Process N. Environ Sci Technol 48(16):9187–9196CrossRefGoogle Scholar
  36. Latha R, Kalaivani R (2012) Bacterial degradation of crude oil by gravimetric analysis. Analysis 3:2789–2795Google Scholar
  37. Li SL, Zhang SY, Dong HP, Zhao QF, Cao CH (2015) Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea. Mar Pollut Bull 100:169–175CrossRefGoogle Scholar
  38. Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376:453–465. CrossRefGoogle Scholar
  39. Li X, Zhao L, Adam M (2016) Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China. Mar Pollut Bull 105:43–50CrossRefGoogle Scholar
  40. Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011) Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol 13:1168–1178. CrossRefGoogle Scholar
  41. Liu Q, Tang J, Liu X, Song B, Zhen M, Ashbolt NJ (2017) Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. J Appl Microbiol 123(4):875–885. CrossRefGoogle Scholar
  42. Lo Piccolo L, de Pasquale C, Fodale R, Puglia AM, Quatrini P (2011) Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol 77:1204–1213. CrossRefGoogle Scholar
  43. Lofrano G, Libralato G, Minetto D, Gisi SD, Todaro F, Conte B, Calabrò D, Quatraro L, Notarnicola M (2017) In situ remediation of contaminated marine sediment: an overview. Environ Sci Pollut Res 24(6):5189–5206. CrossRefGoogle Scholar
  44. Long H, Wang Y, Chang S, Liu G, Chen T, Huo G, Zhang W, Wu X, Tai X, Sun L, Zhang B (2017) Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau. Environ Monit Assess 189:116. CrossRefGoogle Scholar
  45. McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:1–19. CrossRefGoogle Scholar
  46. Nakamiya K, Nakayama T, Ito H, Shibata Y, Morita M (2009) Isolation and properties of a 2-chlorovinylarsonic acid-degrading microorganism. J Hazard Mater 165:388–393. CrossRefGoogle Scholar
  47. Nie Y, Liang J, Fang H, Tang YQ, Wu XL (2011) Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation. Appl Environ Microbiol 77:7279–7288. CrossRefGoogle Scholar
  48. Omrani R, Spini G, Puglisi E, Saidane D (2018) Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation. Biodegradation 29(2):1–23CrossRefGoogle Scholar
  49. Patel AB, Mahala K, Jain K, Madamwar D (2018) Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs). Bioresour Technol 253:288–296. CrossRefGoogle Scholar
  50. Paudyn K, Rutter A, Kerry Rowe R, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114. CrossRefGoogle Scholar
  51. Pham VHT, Chaudhary DK, Jeong SW, Kim J (2018) Oil-degrading properties of a psychrotolerant bacterial strain, Rhodococcus sp. Y2-2, in liquid and soil media. World J Microbiol Biotechnol 34(2):33. CrossRefGoogle Scholar
  52. Poi G, Shahsavari E, Aburto-Medina A, Mok PC, Ball AS (2018) Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation. J Environ Manag 214:157–163. CrossRefGoogle Scholar
  53. Priya A, Mandal AK, Ball AS, Manefield M, Lal B, Sarma PM (2015) Mass culture strategy for bacterial yeast co-culture for degradation of petroleum hydrocarbons in marine environment. Mar Pollut Bull 100:191–199CrossRefGoogle Scholar
  54. Pucci O, Bak M, Peressutti S (2000) Influence of crude oil contamination on the bacterial community of semiarid soils of Patagonia (Argentina). Acta Biotechnol 20:129–146. CrossRefGoogle Scholar
  55. Rodrigues EM, Kalks KHM, Tótola MR (2015) Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island, Brazil. J Environ Manag 156:15–22. CrossRefGoogle Scholar
  56. Rojo F (2009) Degradation of alkanes by bacteria: minireview. Environ Microbiol 11:2477–2490. CrossRefGoogle Scholar
  57. Saitoh S, Aoyama H, Akutsu M, Nakano K, Shinzato N, Matsui T (2013) Genomic sequencing-based detection of large deletions in Rhodococcus rhodochrous strain B-276. J Biosci Bioeng 116:309–312. CrossRefGoogle Scholar
  58. Sakai Y, Maeng JH, Tani Y, Kato N (1994) Use of long-chain n-alkanes (C13–C44) by an isolate, Acinetobacter sp. M-1. Biosci Biotechnol Biochem 58:2128–2130. CrossRefGoogle Scholar
  59. Serrato RV, Sassaki GL, Cruz LM, Pedrosa FO, Gorin PAJ, Iacomini M (2006) Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica. Can J Microbiol 52:489–493CrossRefGoogle Scholar
  60. Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA (2018) Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environ Sci Pollut Res 25(17):16355–16375. CrossRefGoogle Scholar
  61. Simpanen S, Dahl M, Gerlach M, Mikkonen A, Malk V, Mikola J, Romantschuk M (2016) Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident. Environ Sci Pollut Res 23(24):25024–25038. CrossRefGoogle Scholar
  62. Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206. CrossRefGoogle Scholar
  63. Srivastva N, Singh A, Bhardwaj Y, Dubey SK (2018) Biotechnological potential for degradation of isoprene: a review. Crit Rev Biotechnol 38:587–599. CrossRefGoogle Scholar
  64. Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332. CrossRefGoogle Scholar
  65. Tischler D, Eulberg D, Lakner S, Kaschabek SR, Van Berkel WJH, Schlömann M (2009) Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. J Bacteriol 191:4996–5009. CrossRefGoogle Scholar
  66. Toledo FL, Calvo C, Rodelas B, González-López J (2006) Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol 29:244–252. CrossRefGoogle Scholar
  67. Tripodi KEJ, Berardi F, Uttaro AD (2018) Improved characterization of polyunsaturated fatty acids desaturases and elongases by co-expression in Saccharomyces cerevisiae with a protozoan acyl-CoA synthetase. Eur J Lipid Sci Technol Res 120.
  68. Van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314. CrossRefGoogle Scholar
  69. Wang W, Cao L, Tan H, Zhang R (2016) Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria. Appl Microbiol Biotechnol 100:9699–9707. CrossRefGoogle Scholar
  70. Wang W, Shao Z (2012a) Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3. Appl Microbiol Biotechnol:437–448.
  71. Wang W, Shao Z (2012b) Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiol Ecol 80:523–533. CrossRefGoogle Scholar
  72. Ward O, Singh A, Van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260–270. CrossRefGoogle Scholar
  73. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221. CrossRefGoogle Scholar
  74. Whyte LG, Smits THM, Labbé D, Witholt B, Greer CW, Van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942. CrossRefGoogle Scholar
  75. Wu M, Chen L, Tian Y, Ding Y, Dick WA (2013) Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Pollut 178:152–158CrossRefGoogle Scholar
  76. Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164CrossRefGoogle Scholar
  77. Wu M, Li W, Dick WA, Ye X, Chen K, Kost D, Chen L (2017) Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 169:124–130. CrossRefGoogle Scholar
  78. Xu R, Zhang Z, Wang L, Yin N, Zhan X (2018) Surfactant-enhanced biodegradation of crude oil by mixed bacterial consortium in contaminated soil. Environ Sci Pollut Res 25(15):14437–14446. CrossRefGoogle Scholar
  79. Yang R, Liu G, Chen T, Li S, An L, Zhang G, Li G, Chang S, Zhang W, Chen X, Wu X, Zhang B (2018) Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation. Genomics.
  80. Yang R, Xue L, Chang S, Zhang G, Chen T, Liu G (2016) Studies on isolation, identification of cold-resistant petroleum-degrading strain and its degradation capability (China). Acta Agric Zhejiangensis 28:1781–1789Google Scholar
  81. Yuan X, Zhang X, Chen X, Kong D, Liu X, Shen S (2018) Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresour Technol 264:190–197. CrossRefGoogle Scholar
  82. Živković S, Veljković M (2017) Environmental impacts the of production and use of biodiesel. Environ Sci Pollut Res 25(1):191–199. Google Scholar
  83. Zhang G, Chen T, Chang S, Zhang W, Wu X, Wu M, Wang Y, Long H, Chen X, Wang Y, Liu G (2016) Complete genome sequence of Acinetobacter sp. TTH0-4, a cold-active crude oil degrading strain isolated from Qinghai-Tibet Plateau. J Biotechnol 226:54–55. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ruiqi Yang
    • 1
    • 2
    • 3
  • Gaosen Zhang
    • 1
    • 2
  • Shiweng Li
    • 2
    • 4
  • Faegheh Moazeni
    • 5
  • Yunshi Li
    • 1
    • 2
    • 3
  • Yongna Wu
    • 1
    • 2
    • 3
  • Wei Zhang
    • 1
    • 2
  • Tuo Chen
    • 2
    • 6
    Email author
  • Guangxiu Liu
    • 1
    • 2
    Email author
  • Binglin Zhang
    • 1
    • 2
  • Xiukun Wu
    • 1
    • 2
  1. 1.Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.Key Laboratory of Extreme Environmental Microbial Resources and EngineeringLanzhouChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhouChina
  5. 5.School of Science Engineering and TechnologyPenn State Harrisburg UniversityMiddletownUSA
  6. 6.State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina

Personalised recommendations