Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 1537–1547 | Cite as

Distinctive impact of polystyrene nano-spherules as an emergent pollutant toward the environment

  • Prabhakar Mishra
  • Saranya Vinayagam
  • Kuppendran Duraisamy
  • Shrigouri Ravindrakumar Patil
  • Jueelee Godbole
  • Alina Mohan
  • Amitava Mukherjee
  • Natarajan ChandrasekaranEmail author
Research Article


The increasing load of nanoplastic pollution in the environment has become a major concern toward human and environmental safety. The current investigation mainly focused on assessing the toxic behavior of nanoplastics (polystyrene nano-spheres (PNS)) toward blood cells and marine crustacean. The study also investigated the temporal stability of PNS under different water matrices and its size-dependent sedimentation behavior in the sea water dispersion. The nano-dispersion showed mean particle size of 561.4 ± 0.80 and 613.7 ± 0.11 nm for PNS 1 and 781.4 ± 0.80 and 913.7 ± 0.11 nm for PNS 2 in lake and seawater, respectively after 48-h incubation, which is ~ 8-fold increase from its original size. The LC50 value against Artemia salina and lymphocytes were found to be 4.82 and 8.79 μg/mL, and 75 μg/mL, respectively for PNS 1 and PNS 2. The genotoxic study reveals that around 50% of lymphocytes were affected by both PNS at 50 μg/mL concentration, whereas the cytotoxic studies on RBC and lymphocytes showed 50% toxicity only at 100 μg/mL concentration. The genotoxic study displayed numerous tri- and multi-nucleated cells. The biochemical profile of A. salina exposed to lethal concentration demonstrated a significant decrease in the total protein, reduced glutathione, and catalase activity and increase in lipid peroxidation activity as a result of PNS permeation to tissues. In conclusion, the present study demonstrated that the polystyrene nano-spheres are emerging pollutant in the environment and are hazardous to humans.


Nanoplastics Polystyrene nano-spheres Lymphocytes CBMN Artemia salina Genotoxicity 



We extend our profound thanks to VIT, Vellore for providing the proper lab amenities to carry out this research work. We greatly appreciate the efforts of Dr. P.M.Gopinath, DST-NPDF, Centre for Nanobiotechnology, VIT University, Vellore, in the data analysis and revision process.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abei H (1974) Catalase. Methods of Enzymatic Analysis 2:673–684CrossRefGoogle Scholar
  2. Andrady AL (2010) Measurement and occurrence of nanoplastics in the environment, vol 2010. Presentation at the 2nd research workshop on microplastic debris, Tacoma, pp 5–6Google Scholar
  3. Andrady AL (2011) Nanoplastics in the marine environment. Mar Pollut Bull 62:1596e1605. CrossRefGoogle Scholar
  4. Artells E, Issartel J, Auffan M, Borschneck D, Thill A, Tella M, Brousset L, Rose J, Bottero JY, Thiery A (2013) Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. PLoS One 8(8):e71260CrossRefGoogle Scholar
  5. Ates M, Daniels J, Arslan Z, Farah IO, Rivera HF (2013) Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci: Process Impacts 15(1):225–233Google Scholar
  6. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11Google Scholar
  7. Barnes DK, Galgani F, Thompson RC & Barlaz M (2009a) Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364, 1985–1998,
  8. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009b) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B 364:1985–1998CrossRefGoogle Scholar
  9. Bergami E, Pugnalini S, Vannuccini ML, Manfra L, Faleri C, Savorelli F, Dawson KA, Corsi I (2017) Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol 189:159–169CrossRefGoogle Scholar
  10. Bergmann M, Gutow L, Klages M (eds) (2015) Marine anthropogenic litter. SpringerGoogle Scholar
  11. Besseling E, Wang B, Lürling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48(20):12336–12343CrossRefGoogle Scholar
  12. Besseling E, Quik JTK, Sun M, Koelmans AA (2017) Fate of nano- and microplastic in freshwater systems: a modeling study. Environ Pollut 220(Pt A):540–548CrossRefGoogle Scholar
  13. Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561CrossRefGoogle Scholar
  14. Bouwmeester H, Hollman PC, Peters RJ (2015) Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 49(15):8932–8947CrossRefGoogle Scholar
  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  16. Browne MA (2015) Sources and pathways of microplastic to habitats. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 229–244CrossRefGoogle Scholar
  17. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway TS et al (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179CrossRefGoogle Scholar
  18. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47(12):6646–6655CrossRefGoogle Scholar
  19. Cózar A, Echevarria F, Gonzalez-Gordillo JI, Irigoien X, Ubeda B, Hernandez-Leon S, Palma AT, Navarro S, Garcia-de-Lomas J, Ruiz A, Fernandez-de-Puelles ML, Duarte CM (2014) Plastic debris in the open ocean. Proc Natl Acad Sci 111(28):10239–10244CrossRefGoogle Scholar
  20. Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I (2014) Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ Sci Technol 48:12302–12311CrossRefGoogle Scholar
  21. Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852CrossRefGoogle Scholar
  22. Esser P. (1988) Principles in adsorption to polystyrene, Thermo Scientific Nunc Bulletin, 1–5Google Scholar
  23. Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2(5):1084–1104CrossRefGoogle Scholar
  24. Fernández RG (2001) Artemia bioencapsulation I. effect of particle sizes on the filtering behavior of Artemia franciscana. J Crustac Biol 21(2):435–442CrossRefGoogle Scholar
  25. Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85:156–163CrossRefGoogle Scholar
  26. Galgani F, Hanke G, Maes T (2015) Global distribution, composition and abundance of marine litter. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 29–56CrossRefGoogle Scholar
  27. Gigault J, Ter Halle A, Baudrimont M, Pascal PY, Gauffre F, Phi TL, El Hadri H, Grassl B, Reynaud S (2018) Current opinion: what is a nanoplastic? Environ Pollut 235:1030–1034CrossRefGoogle Scholar
  28. Hammer J, Kraak MH, Parsons JR (2012) Plastics in the marine environment: the dark side of a modern gift. Rev Environ Contam Toxicol 220:1–44Google Scholar
  29. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Nanoplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075CrossRefGoogle Scholar
  30. Hong R, Kang TY, Michels CA, Gadura N (2012) Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78:1776–1784CrossRefGoogle Scholar
  31. Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C (2013) Contamination of beach sediments of a subalpine lake with microplastic particles. Curr Biol 23:867–868CrossRefGoogle Scholar
  32. Jackson GA (2015) Coagulation in a rotating cylinder. Limnol Oceanogr Methods 13(4):194–201CrossRefGoogle Scholar
  33. Jeong CB, Kang HM, Lee MC, Kim DH, Han J, Hwang DS, Lee JS (2017) Adverse effects of nanoplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci Rep 7:41323CrossRefGoogle Scholar
  34. Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114:1697–1702CrossRefGoogle Scholar
  35. Khoshnood R, Jaafarzadeh N, Jamili S, Farshchi P, Taghavi L (2017) Acute toxicity of TiO2, CuO and ZnO nanoparticles in brine shrimp Artemia franciscana. Iran J Fish Sci 16(4):1287–1296Google Scholar
  36. Klaine SJ, Koelmans AA, Horne N, Handy RD, Kapustka L, Nowack B et al (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31:3–14CrossRefGoogle Scholar
  37. Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54CrossRefGoogle Scholar
  38. Kumar D, Roy R, Parashar A, Raichur AM, Chandrasekaran N, Mukherjee A, Mukherjee A (2017) Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Environ Toxicol 32(5):1617–1627CrossRefGoogle Scholar
  39. Lee KW, Shim WJ, Kwon OY, Kang J-H (2013) Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ Sci Technol 47:11278–11283CrossRefGoogle Scholar
  40. Logan BE, Wilkinson DB (1990) Fractal geometry of marine snow and other biological aggregates. Limnol Oceanogr 35(1):130–136CrossRefGoogle Scholar
  41. Lu JW, Zhang ZP, Ren XZ, Chen YZ, Yu J, Guo ZX (2008) High-elongation fiber mats by electrospinning of polyoxymethylene. Macromolecules 41:3762–3764CrossRefGoogle Scholar
  42. Madhav MR, David SEM, Kumar RS, Swathy JS, Bhuvaneshwari M, Mukherjee A, Chandrasekaran N (2017) Toxicity and accumulation of copper oxide (CuO) nanoparticles in different life stages of Artemia salina. Environ Toxicol Pharmacol 52:227–238CrossRefGoogle Scholar
  43. Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson L-A, Cedervall T (2017) Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep 7(1):11452CrossRefGoogle Scholar
  44. Meyer S, Berrut S, Goodenough TIJ, Rajendram VS, Pinfield VJ, Povey MJW (2006) A comparative study of ultrasound and laser light diffraction techniques for particle size determination in dairy beverages. Meas Sci Technol 17(2):289–297CrossRefGoogle Scholar
  45. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59CrossRefGoogle Scholar
  46. Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M, Muzykantov V (2016) The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS One 11(3):e0152074CrossRefGoogle Scholar
  47. Peng L, Wang B, Ren P (2005) Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B: Biointerfaces 45(2):108–111CrossRefGoogle Scholar
  48. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size control parameters. Prog Polym Sci 2011(36):887–913CrossRefGoogle Scholar
  49. Royer S-J, Ferrón S, Wilson ST, Karl DM (2018) Production of methane and ethylene from plastic in the environment. PLoS One 13(8):e0200574CrossRefGoogle Scholar
  50. Schoonhoven L (1982) Biological aspects of antifeedants. Entomologia experimentalis et applicata 31:57–69CrossRefGoogle Scholar
  51. Seltenrich N (2015) New link in the food chain? Marine plastic pollution and seafood safety. Environ Health Perspect 123(2):A34–A41CrossRefGoogle Scholar
  52. Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health Part A 44(14):1485–1495CrossRefGoogle Scholar
  53. Shim WJ, Song YK, Hong SH, Jang M, Han GM (2014) Producing fragmented micro and nano-sized expanded polystyrene particles with an accelerated mechanical abrasion experiment. May 2014, SETAC Annual Meeting, Basel, SwitzerlandGoogle Scholar
  54. Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L et al (2017) Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol 51(23):13689–13697CrossRefGoogle Scholar
  55. Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61CrossRefGoogle Scholar
  56. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41(22):7759–7764CrossRefGoogle Scholar
  57. Thompson RC (2015) Nanoplastics in the marine environment: sources, consequences and solutions. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 185–200CrossRefGoogle Scholar
  58. Velzeboer I, Kwadijk CJAF, Koelmans AA (2014a) Strong sorption of PCBs to nanoplastics, nanoplastics, carbon nanotubes and fullerenes. Environ Sci Technol 48:4869–4876CrossRefGoogle Scholar
  59. Velzeboer I, Quik JTK, van de Meent D, Koelmans AA (2014b) Rapid settling of nanomaterials due to hetero-aggregation with suspended sediment. Environ Toxicol Chem 33:1766–1773CrossRefGoogle Scholar
  60. Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9(5):455–459Google Scholar
  61. Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak AD, Winther-Nielsen M, Reifferscheid G (2014) Nanoplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26:12CrossRefGoogle Scholar
  62. Ward JE, Kach DJ (2009) Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68:137–142CrossRefGoogle Scholar
  63. Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA (2012) Effects of nanopolystyrene on the feeding behaviour of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem 31:2490–2497CrossRefGoogle Scholar
  64. Zarfl C, Matthies M (2010) Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 60(10):1810–1814CrossRefGoogle Scholar
  65. Zbyszewski M, Corcoran PL (2011) Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut 220:365–372CrossRefGoogle Scholar
  66. Zbyszewski M, Corcoran PL, Hockin A (2014) Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, Norht America. J Great Lakes Res 2014(40):288–299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Prabhakar Mishra
    • 1
  • Saranya Vinayagam
    • 1
  • Kuppendran Duraisamy
    • 1
  • Shrigouri Ravindrakumar Patil
    • 1
  • Jueelee Godbole
    • 1
  • Alina Mohan
    • 1
  • Amitava Mukherjee
    • 1
  • Natarajan Chandrasekaran
    • 1
    Email author
  1. 1.Centre for NanobiotechnologyVIT UniversityVelloreIndia

Personalised recommendations