Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 1675–1692 | Cite as

The influence of local emissions and regional air pollution transport on a European air pollution hot spot

  • Jana KozákováEmail author
  • Petra Pokorná
  • Petr Vodička
  • Lucie Ondráčková
  • Jakub Ondráček
  • Kamil Křůmal
  • Pavel Mikuška
  • Jan Hovorka
  • Pavel Moravec
  • Jaroslav Schwarz
Research Article


The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots: Ostrava. The aim of this study was to perform an air quality comparison between an urban site (Radvanice), which has a nearby metallurgical complex, and a suburban site (Plesná) to estimate air pollution sources and determine their local and/or regional origins. Twenty-four hour PM1 and PM10 (particular matter) concentrations, detailed mass size distributions (MSDs) to distinguish the sources of the fine and coarse PM, and their chemical compositions were investigated in parallel at both sites during the winter of 2014. Positive matrix factorization (PMF) was applied to the PM1 and PM10 chemical compositions to investigate their sources. During the measurement campaign, prevailing northeastern-southwestern (NE-SW) wind directions (WDs) were recorded. Higher average PM10 concentration was measured in Radvanice than in Plesná, whereas PM1 concentrations were similar at both sites. A source apportionment analysis revealed six and five sources for PM10 and PM1, respectively. In Radvanice, the amount of PM and the most chemical species were similar under SW and NE WD conditions. The dominant sources were industrial (43% for PM10 and 27% for PM1), which were caused by a large metallurgical complex located to the SW, and biomass burning (25% for PM10 and 36% for PM1). In Plesná, the concentrations of PM and all species significantly increased under NE WD conditions. Secondary inorganic aerosols were dominant, with the highest contributions deriving from the NE WD. Therefore, regional pollution transport from the industrial sector in Silesian Province (Poland) was evident. Biomass burning contributed 22% and 24% to PM10 and PM1, respectively. The air quality in Ostrava was influenced by local sources and regional pollution transport. The issue of poor air quality in this region is complex. Therefore, international cooperation from both states (the Czech Republic and Poland) is needed to achieve a reduction in air pollution levels.


Inter-site comparison Positive matrix factorization PM1 PM10 Chemical size distribution Industrial site 



The authors gratefully acknowledge the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and the Real-time Environmental Applications and Display sYstem (READY) website (, which were used in this publication. We thank the American Journal Experts (AJE) for the English language editing.

Funding information

This work was supported by the Charles University (No. 274213), the Czech Grant Agency (No. P503/12/G147), the infrastructure project of the MEYS of the Czech Republic ACTRIS-CZ - LM2015037, and ERDF project “ACTRIS-CZ RI” (No. CZ.02.1.01/0.0/0.0/16_013/0001315).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_3670_MOESM1_ESM.docx (5.5 mb)
ESM 1 (DOCX 5650 kb)


  1. Allen AG, Nemitz E, Shi JP, Harrison JP, Greenwood JC (2001) Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos Environ 35:4581–4591. CrossRefGoogle Scholar
  2. Behera SN, Sharma M, Aneja VP, Balasubramanian R (2013) Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res 20:8092–8131. CrossRefGoogle Scholar
  3. Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108. CrossRefGoogle Scholar
  4. Benetello F, Squizzato S, Hofer A, Masiol M, Khan MB, Piazzalunga A, Fermo P, Formenton GM, Rampazzo G, Pavoni B (2017) Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement. Environ Sci Pollut Res 24:2100–2115. CrossRefGoogle Scholar
  5. Carslaw DC (2015) The openair manual open-source tools for analysing air pollution data. King’s Coll London 287Google Scholar
  6. Carslaw DC, Ropkins K (2012) Openair - an R package for air quality data analysis. Environ Model Softw 27–28:52–61. CrossRefGoogle Scholar
  7. Černikovský L, Krejčí B, Blažek Z, Volná V (2016) Transboundary air-pollution transport in the Czech-polish border region between the cities of Ostrava and Katovice. Cent Eur J Public Health 24:45–50CrossRefGoogle Scholar
  8. Chaloulakou A, Kassomenos P, Spyrellis N, Demokritou P, Koutrakis P (2003) Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos Environ 37:649–660. CrossRefGoogle Scholar
  9. Chaloulakou A, Kassomenos P, Grivas G, Spyrellis N (2005) Particulate matter and black smoke concentration levels in Central Athens, Greece. Environ Int 31:651–659. CrossRefGoogle Scholar
  10. CHMI (2014) Air pollution and atmospheric deposition in data, the Czech Republic [WWW document]. Annu. Tabular Overv. URL Accessed 6.21.17
  11. CHMI (2015) Informace o emisích ze zdrojů v České republice [WWW Document]. URL Accessed 12.2.17
  12. CHMI (2017) Grafická ročenka 2016 [WWW Document]. URL Accessed 3.6.18
  13. Chow JC (1995) Measurement methods to determine compliance with ambient air quality standards for suspended particles. J Air Waste Manage Assoc 45:1096–2247. CrossRefGoogle Scholar
  14. Chow JC, Lowenthal DH, Chen LWA, Wang X, Watson JG (2015) Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Heal 8:243–263. CrossRefGoogle Scholar
  15. Contini D, Belosi F, Gambaro A, Cesari D, Stortini AM, Bove MC (2012) Comparison of PM10 concentrations and metal content in three different sites of the Venice lagoon: an analysis of possible aerosol sources. J Environ Sci (China) 24:1954–1965. CrossRefGoogle Scholar
  16. Contini D, Cesari D, Genga A, Siciliano M, Ielpo P, Guascito MR, Conte M (2014) Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). Sci Total Environ 472:248–261. CrossRefGoogle Scholar
  17. Diapouli E, Manousakas M, Vratolis S, Vasilatou V, Maggos T, Saraga D (2017) Evolution of air pollution source contributions over one decade , derived by PM 10 and PM 2 . 5 source apportionment in two metropolitan urban areas in Greece. Atmos Environ 164:416–430. CrossRefGoogle Scholar
  18. Dostal M, Pastorkova A, Rychlik S, Rychlikova E, Svecova V, Schallerova E, Sram RJ (2013) Comparison of child morbidity in regions of Ostrava, Czech Republic, with different degrees of pollution: a retrospective cohort study. Environ Health 12:74. CrossRefGoogle Scholar
  19. EEA (2016) Air quality in Europe-2016 report. Copenhagen.
  20. EEA (2017a) Air quality in Europe — 2017 Report, EEA technical report. Copenhagen, Denmark.
  21. EEA (2017b) European Union emission inventory report 1990–2015 under the UNECE Convention on Long-range Transboundary Air Pollution, EEA Technical report Copenhagen.
  22. Elsasser M, Busch C, Orasche J, Schön C, Hartmann H, Schnelle-Kreis J, Zimmermann R (2013) Dynamic changes of the aerosol composition and concentration during different burning phases of wood combustion. Energy and Fuels 27:4959–4968. CrossRefGoogle Scholar
  23. EU (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, Official Journal of the European Communities.Google Scholar
  24. Grabowsky J, Streibel T, Sklorz M, Chow JC, Watson JG, Mamakos A, Zimmermann R (2011) Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level. Anal Bioanal Chem 401:3153–3164. CrossRefGoogle Scholar
  25. Gu J, Schnelle-Kreis J, Pitz M, Diemer J, Reller A, Zimmermann R, Soentgen J, Peters A, Cyrys J (2013) Spatial and temporal variability of PM10 sources in Augsburg, Germany. Atmos Environ 71:131–139. CrossRefGoogle Scholar
  26. Haller L, Claiborn C, Larson T, Koenig J, Norris G, Edgar R (1999) Airborne particulate matter size distributions in an arid urban area. J Air Waste Manag Assoc 49:161–168. CrossRefGoogle Scholar
  27. Harrison RM, Van Grieken R (1998) Atmospheric particles. John Wiley & Sons, Inc., Chichester; New YorkGoogle Scholar
  28. Jancsek-Turóczi B, Hoffer A, Nyírö-Kósa I, Gelencsér A (2013) Sampling and characterization of resuspended and respirable road dust. J Aerosol Sci 65:69–76. CrossRefGoogle Scholar
  29. Kim E, Hopke PK (2004) Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions. J Air Waste Manage Assoc 54:773–785CrossRefGoogle Scholar
  30. Kim KH, Sekiguchi K, Furuuchi M, Sakamoto K (2011) Seasonal variation of carbonaceous and ionic components in ultrafine and fine particles in an urban area of Japan. Atmos Environ 45:1581–1590. CrossRefGoogle Scholar
  31. Kozáková J, Pokorná P, Černíková A, Hovorka J, Braniš M, Moravec P, Schwarz J (2017) The association between intermodal (PM1-2.5) and PM1, PM2.5, coarse fraction and meteorological parameters in various environments in Central Europe. Aerosol Air Qual Res 17:1234–1243. CrossRefGoogle Scholar
  32. Kozáková J, Leoni C, Klán M, Hovorka J, Racek M, Koštejn M, Ondráček J, Moravec P, Schwarz J (2018) Chemical characterization of PM1-2.5 and its associations with PM1, PM2.5-10 and meteorology in urban and suburban environments. Aerosol Air Qual Res Accepted M.
  33. Krudysz M, Moore K, Geller M, Sioutas C, Froines J (2009) Intra-community spatial variability of particulate matter size distributions in southern California/Los Angeles. Atmos Chem Phys 9:1061–1075. CrossRefGoogle Scholar
  34. Křůmal K, Mikuska P, Večeřa Z (2015) Monosaccharide anhydrides, monocarboxylic acids and OC/EC in PM1 aerosols in urban areas in the Czech Republic. Atmos Pollut Res 6:917–927. CrossRefGoogle Scholar
  35. Křůmal K, Mikuška P, Večeřa Z (2017) Characterization of organic compounds in winter PM1 aerosols in a small industrial town. Atmos Pollut Res 8:930–939. CrossRefGoogle Scholar
  36. Laongsri B, Harrison RM (2013) Atmospheric behaviour of particulate oxalate at UK urban background and rural sites. Atmos Environ 71:319–326. CrossRefGoogle Scholar
  37. Lenschow P, Abraham H-J, Kutzner K, Lutz M, Preuss J-D, Reichenbächer W (2001) Some ideas about the sources of PM10. Atmos Environ 35:23–33. CrossRefGoogle Scholar
  38. Leoni C, Hovorka J, Docekalova V, Cajthaml T, Marvanova S (2016) Source impact determination using airborne and ground measurements of industrial plumes. Environ Sci Technol 50:9881–9888. CrossRefGoogle Scholar
  39. Leoni C, Pokorná P, Hovorka J, Masiol M, Topinka J, Zhao Y, Křůmal K, Cliff S, Mikuška P, Hopke PK (2018) Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environ Pollut 234:145–154. CrossRefGoogle Scholar
  40. Liu W, Wang Y, Russell A, Edgerton ES (2006) Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmos Environ 40:S445–S466. CrossRefGoogle Scholar
  41. Matta E, Facchini MC, Decesari S, Mircea M, Cavalli F, Fuzzi S, Putaud J-P, Dell’Acqua a (2002) Chemical mass balance of size-segregated atmospheric aerosol in an urban area of the Po Valley, Italy. Atmos Chem Phys Discuss 2:2167–2208. CrossRefGoogle Scholar
  42. Mikuška P, Křůmal K, Večeřa Z (2015) Characterization of organic compounds in the PM2.5 aerosols in winter in an industrial urban area. Atmos Environ 105:97–108. CrossRefGoogle Scholar
  43. Mira-Salama D, Grüning C, Jensen NR, Cavalli P, Putaud JP, Larsen BR, Raes F, Coe H (2008) Source attribution of urban smog episodes caused by coal combustion. Atmos Res 88:294–304. CrossRefGoogle Scholar
  44. MoT (2010) Unified vector transport map [WWW document]. URL Accessed 5.23.17
  45. Paatero P, Hopke PK (2003) Discarding or downweighting high-noise variables in factor analytic models. Anal Chim Acta 490:277–289. CrossRefGoogle Scholar
  46. Pant P, Harrison RM (2013) Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos Environ 77:78–97. CrossRefGoogle Scholar
  47. Pastuszka JS, Wawroś A, Talik E, Paw UKT (2003) Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland. Sci Total Environ 309:237–251. CrossRefGoogle Scholar
  48. Pérez N, Pey J, Querol X, Alastuey A, López JM, Viana M (2008) Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmos Environ 42:1677–1691. CrossRefGoogle Scholar
  49. Pio CA, Castro LM, Cerqueira MA, Santos IM, Belchior F, Salgueiro ML (1996) Source assessment of particulate air pollutants measured at the southwest European coast. Atmos Environ 30:3309–3320. CrossRefGoogle Scholar
  50. Pokorná P, Hovorka J, Klán M, Hopke PK (2015) Source apportionment of size resolved particulate matter at a European air pollution hot spot. Sci Total Environ 502:172–183. CrossRefGoogle Scholar
  51. Pokorná P, Hovorka J, Hopke PK (2016) Elemental composition and source identification of very fine aerosol particles in a European air pollution hot-spot. Atmos Pollut Res 7:671–679. CrossRefGoogle Scholar
  52. Polissar AV, Hopke PK, Paatero P (1998) Atmospheric aerosol over Alaska - 2. Elemental composition and sources. J Geophys Res 103(doi):19045–19057. CrossRefGoogle Scholar
  53. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chemie - Int Ed 44:7520–7540. CrossRefGoogle Scholar
  54. Puxbaum H, Caseiro A, Sánchez-Ochoa A, Kasper-Giebl A, Claeys M, Gelencsér A, Legrand M, Preunkert S, Pio CA (2007) Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J Geophys Res Atmos 112:1–11. CrossRefGoogle Scholar
  55. Rogula-Kozłowska W, Klejnowski K (2013) Submicrometer aerosol in rural and urban backgrounds in southern Poland: primary and secondary components of PM1. Bull Environ Contam Toxicol 90:103–109. CrossRefGoogle Scholar
  56. Rogula-Kozłowska W, Klejnowski K, Rogula-Kopiec P, Mathews B, Szopa S (2012) A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland. Bull Environ Contam Toxicol 88:722–729. CrossRefGoogle Scholar
  57. Rogula-Kozłowska W, Błaszczak B, Szopa S, Klejnowski K, Sówka I, Zwoździak A, Jabłońska M, Mathews B (2013a) PM2.5 in the central part of Upper Silesia, Poland: concentrations, elemental composition, and mobility of components. Environ Monit Assess 185:581–601. CrossRefGoogle Scholar
  58. Rogula-Kozłowska W, Kozielska B, Klejnowski KK, Szopa S (2013b) Hazardous compounds in urban PM in the central part of Upper Silesia (Poland) in winter. Arch Environ Prot 39:53–65. CrossRefGoogle Scholar
  59. Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display sYstem: READY. Environ Model Softw 95:210–228. CrossRefGoogle Scholar
  60. Rossner P, Tulupova E, Rossnerova A, Libalova H, Honkova K, Gmuender H, Pastorkova A, Svecova V, Topinka J, Sram RJ (2015) Reduced gene expression levels after chronic exposure to high concentrations of air pollutants. Mutat Res - Fundam Mol Mech Mutagen 780:60–70. CrossRefGoogle Scholar
  61. Rossnerova A, Spatova M, Rossner P, Novakova Z, Solansky I, Sram RJ (2011) Factors affecting the frequency of micronuclei in asthmatic and healthy children from Ostrava. Mutat Res - Fundam Mol Mech Mutagen 708:44–49. CrossRefGoogle Scholar
  62. ŘSD (2010) Celostátní sčítání dopravy 2010 [WWW Document]. URL Accessed 5.23.17
  63. Salma I, Németh Z, Weidinger T, Maenhaut W, Claeys M, Molnár M, Major I, Ajtai T, Utry N, Bozóki Z (2017) Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method. Atmos Chem Phys 17:13767–13781. CrossRefGoogle Scholar
  64. Samek L, Stegowski Z, Styszko K, Furman L, Fiedor J (2018) Seasonal contribution of assessed sources to submicron and fine particulate matter in a Central European urban area. Environ Pollut 241:406–411. CrossRefGoogle Scholar
  65. Schwarz J, Chi X, Maenhaut W, Civiš M, Hovorka J, Smolík J (2008) Elemental and organic carbon in atmospheric aerosols at downtown and suburban sites in Prague. Atmos Res 90:287–302. CrossRefGoogle Scholar
  66. Schwarz J, Štefancová L, Maenhaut W, Smolík J, Ždímal V (2012) Mass and chemically speciated size distribution of Prague aerosol using an aerosol dryer--the influence of air mass origin. Sci Total Environ 437:348–362. CrossRefGoogle Scholar
  67. Schwarz J, Cusack M, Karban J, Chalupníčková E, Havránek V, Smolík J, Ždímal V (2016) PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos Res 176–177:108–120. CrossRefGoogle Scholar
  68. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd editio. ed. Wiley, J., New YorkGoogle Scholar
  69. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182. CrossRefGoogle Scholar
  70. Spinazzè A, Fanti G, Borghi F, Del Buono L, Campagnolo D, Rovelli S, Cattaneo A, Cavallo DM (2017) Field comparison of instruments for exposure assessment of airborne ultrafine particles and particulate matter. Atmos Environ 154:274–284. CrossRefGoogle Scholar
  71. Squizzato S, Masiol M (2015) Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: a case study in Venice (Italy). Atmos Environ 119:69–81. CrossRefGoogle Scholar
  72. Squizzato S, Masiol M, Agostini C, Visin F, Formenton G, Harrison RM, Rampazzo G (2016) Factors, origin and sources affecting PM1 concentrations and composition at an urban background site. Atmos Res 180:262–273. CrossRefGoogle Scholar
  73. Sram RJ, Dostal M, Libalova H, Rossner P, Rossnerova A, Svecova V, Topinka J, Bartonova A (2013) The European hot spot of B [a] P and PM 2.5 exposure-the Ostrava region, Czech Republic: health research results. ISRN Public Health 2013:1–12. CrossRefGoogle Scholar
  74. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077. CrossRefGoogle Scholar
  75. Topinka J, Rossner P, Milcova A, Schmuczerova J, Svecova V, Sram RJ (2011) DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay. Toxicol Lett 202:186–192. CrossRefGoogle Scholar
  76. Turpin BJ, Lim H-J (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610. CrossRefGoogle Scholar
  77. Vecchi R, Marcazzan G, Valli G, Ceriani M, Antoniazzi C (2004) The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos Environ 38:4437–4446. CrossRefGoogle Scholar
  78. Vecchi R, Chiari M, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Silvani F, Valli G (2008) A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmos Environ 42:2240–2253. CrossRefGoogle Scholar
  79. Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849. CrossRefGoogle Scholar
  80. Vodička P, Schwarz J, Cusack M, Ždímal V (2015) Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter. Sci Total Environ 518–519:424–433. CrossRefGoogle Scholar
  81. Wilson JG, Kingham S, Pearce J, Sturman AP (2005) A review of intraurban variations in particulate air pollution: implications for epidemiological research. Atmos Environ 39:6444–6462. CrossRefGoogle Scholar
  82. Wongphatarakul V, Friedlander SK, Pinto JP (1998) A comparative study of PM2.5 ambient aerosol chemical databases. Environ Sci Technol 32:3926–3934. CrossRefGoogle Scholar
  83. Yttri KE, Schnelle-Kreis J, Maenhaut W, Abbaszade G, Alves C, Bjerke A, Bonnier N, Bossi R, Claeys M, Dye C, Evtyugina M, García-Gacio D, Hillamo R, Hoffer A, Hyder M, Iinuma Y, Jaffrezo JL, Kasper-Giebl A, Kiss G, López-Mahia PL, Pio C, Piot C, Ramirez-Santa-Cruz C, Sciare J, Teinilä K, Vermeylen R, Vicente A, Zimmermann R (2015) An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples. Atmos Meas Tech 8:125–147. CrossRefGoogle Scholar
  84. Zhao W, Hopke PK (2004) Source apportionment for ambient particles in the San Gorgonio wilderness. Atmos Environ 38:5901–5910. CrossRefGoogle Scholar
  85. Zhao W, Hopke PK (2006) Source identification for fine aerosols in Mammoth Cave National Park. Atmos Res 80:309–322. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jana Kozáková
    • 1
    • 2
    Email author
  • Petra Pokorná
    • 1
  • Petr Vodička
    • 1
  • Lucie Ondráčková
    • 1
  • Jakub Ondráček
    • 1
  • Kamil Křůmal
    • 3
  • Pavel Mikuška
    • 3
  • Jan Hovorka
    • 2
  • Pavel Moravec
    • 1
  • Jaroslav Schwarz
    • 1
  1. 1.Department of Aerosols Chemistry and PhysicsInstitute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.iPrague 6 - SuchdolCzech Republic
  2. 2.Institute for Environmental Studies, Faculty of ScienceCharles UniversityPragueCzech Republic
  3. 3.Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.iBrnoCzech Republic

Personalised recommendations