Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 1, pp 600–616 | Cite as

Sub-lethal effects induced by a mixture of different pharmaceutical drugs in predicted environmentally relevant concentrations on Lithobates catesbeianus (Shaw, 1802) (Anura, ranidae) tadpoles

  • Diogo Ferreira do Amaral
  • Mateus Flores Montalvão
  • Bruna de Oliveira Mendes
  • Amanda Pereira da Costa Araújo
  • Aline Sueli de Lima Rodrigues
  • Guilherme MalafaiaEmail author
Research Article

Abstract

The increasing consumption of medications by humans has negative effects such as the increased disposal of these compounds in the environment. Little is known about how the disposal of a “drug mix” (DM) in aquatic ecosystems can affect their biota. Thus, we evaluated whether the exposure of Lithobates casteibeianus tadpoles to a DM composed of different medication classes (antibiotic, anti-inflammatory, antidepressant, anxiolytic, analgesic, and antacid drugs)—at environmentally relevant concentrations—may change their oral morphology, trigger behavioral disorders, and have mutagenic effects on erythrocyte cells. Based on our data, animals exposed to the DM showed changes in mandibular sheath pigmentation, dentition, and swimming activity, as well as atypical behavior in the social aggregation test [with co-specific and interspecific (Physalaemus cuvieri) individuals] and antipredatory defensive response deficit (chemical stimulus from Odonata larvae), after 15 exposure days. The mutagenic analysis revealed higher frequency of nuclear abnormalities in the erythrocytes of tadpoles exposed to the DM (e.g., multilobulated, blebbed, kidney-shaped, notched nucleus, binuclear, and micronucleated erythrocytes). Given the chemical complexity of the DM, we assumed that several organic functions may have been affected, either by the isolated, synergistic, antagonistic, or additive action of DM compounds. Finally, our study confirms the toxicological potential of DM in L. catesbeianus tadpoles, with emphasis to impacts that can affect the fitness of individuals and their natural populations. Thus, we suggest that more attention should be given to the disposal of medications in the environment and reinforce the need of improving water and sewage treatment systems.

Keywords

Medicinal waste Amphibians Aquatic ecosystems Toxicity biomarkers Environmental toxicology 

Notes

Acknowledgments

The authors are grateful to the Brazilian National Council for Research (CNPq) (Brazilian research agency) (Proc. No 467801/2014-2) and Instituto Federal Goiano for the financial support (Proc. No Processo 23219.000626/2018-11). Moreover, the authors are grateful to the CNPq for supporting scholarship to the student who developed this study.

Funding

This study was funded by the Brazilian National Council for Research (CNPq) (Brazilian research agency) (Proc. No 467801/2014-2) and by Instituto Federal Goiano – Campus Urutaí (GO, Brazil) (Proc. No 23219.000753/2017-11).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the procedures were approved by The Ethics Committee on Animal Use of Goiano Federal Institute (Comissão de Ética no Uso de Animais do Instituto Federal Goiano), GO, Brazil (protocol No. 7257130418). Meticulous efforts were made to assure that animals suffered the least possible and to reduce external sources of stress, pain, and discomfort. The current study did not exceed the number of animals necessary to produce trustworthy scientific data. This article does not contain any study with human participants.

References

  1. Altig R (1970) A key to the tadpoles of the continental United States and Canada. Herpetologica:180–207Google Scholar
  2. Amaral DF, Montalvão MF, de Oliveira Mendes B, da Silva Castro AL, Malafaia G (2018a) Behavioral and mutagenic biomarkers in tadpoles exposed to different abamectin concentrations. Environ Sci Pollut Res Int 25(13):12932–12946.  https://doi.org/10.1007/s11356-018-1562-9 CrossRefGoogle Scholar
  3. Amaral DFD, Montalvão MF, Mendes BO, de Souza JM, Chagas TQ, Rodrigues ASL, Malafaia G (2018b) Insights about the toxic effects of tannery effluent on Lithobates catesbeianus tadpoles. Sci Total Environ 621:791–801.  https://doi.org/10.1016/j.scitotenv.2017.11.310 CrossRefGoogle Scholar
  4. Andreozzi R, Caprio V, Ciniglia C, de Champdoré M, Lo Giudice R, Marotta R, Zuccato E (2004) Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ Sci Technol 38(24):6832–6838CrossRefGoogle Scholar
  5. Andrés-Costa MJ, Proctor K, Sabatini MT, Gee AP, Lewis SE, Pico Y, Kasprzyk-Hordern B (2017) Enantioselective transformation of fluoxetine in water and its ecotoxicological relevance. Sci Rep 7:15777CrossRefGoogle Scholar
  6. Anholt BR, Werner EE (1995) Interaction between food availability and predation risk mediated by adaptive behavior. Ecology 76:2230–2234CrossRefGoogle Scholar
  7. Anholt BR, Werner E, Skelly DK (2000) Effect of food and predators on the activity of four larval Ranid frogs. Ecology 81:3509–3521CrossRefGoogle Scholar
  8. Arnold KE, Boxall AB, Brown AR, Cuthbert RJ, Gaw S, Hutchinson TH, Jobling S, Madden JC, Metcalfe CD, Naidoo V, Shore RF, Smits JE, Taggart MA, Thompson HM (2013) Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Biol Lett 9(4):20130492CrossRefGoogle Scholar
  9. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683CrossRefGoogle Scholar
  10. Auvinen H, Havran I, Hubau L, Vanseveren L, Gebhardt W, Linnemann V, Oirchot DV, Laing GD, Rousseau DPL (2017) Removal of pharmaceuticals by a pilot aerated sub-surface flow constructed wetland treating municipal and hospital wastewater. Ecol Eng 100:157–164CrossRefGoogle Scholar
  11. Babini MS, Bionda CL, Salas NE, Martino AL (2015) Health status of tadpoles and metamorphs of Rhinella arenarum (Anura, Bufonidae) that inhabit agroecosystems and its implications for land use. Ecotoxicol Environ Saf 118:118–125.  https://doi.org/10.1016/j.ecoenv.2015.04.017 CrossRefGoogle Scholar
  12. Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B (2017) A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 137:113–120.  https://doi.org/10.1016/j.ecoenv.2016.11.014 CrossRefGoogle Scholar
  13. Bártíková H, Podlipná R, Skálová L (2016a) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301.  https://doi.org/10.1016/j.chemosphere.2015.10.137 CrossRefGoogle Scholar
  14. Bártíková H, Podlipná R, Skálová L (2016b) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301CrossRefGoogle Scholar
  15. Bateman PW, Fleming PA (2015) Body size and group size of Cuban tree frog (Osteopilus septentrionalis) tadpoles influence their escape behavior. Acta Ethol 18:161–166CrossRefGoogle Scholar
  16. Bean TG, Arnold KE, Lane JM, Bergström E, Thomas-Oates J, Rattner BA, Boxall ABA (2017) Predictive framework for estimating exposure of birds to pharmaceuticals. Environ Toxicol Chem 36(9):2335–2344.  https://doi.org/10.1002/etc.3771 CrossRefGoogle Scholar
  17. Berec M, Klapka V, Zemek R (2016) Effect of an alien turtle predator on movement activity of European brown frog tadpoles. Ital J Zool 83(1):68–47CrossRefGoogle Scholar
  18. Berg C, Backstöm, Winberg S, Lindberg R, Brandt (2013) Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus. PLoS One 8(1):e55053CrossRefGoogle Scholar
  19. Bhadra B, Ahmed I, Kim S, Jhung SH (2017) Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbono. Chem Eng J 314:50–58CrossRefGoogle Scholar
  20. Bianchi CL, Sacchi B, Pirola C, Demartin F, Cerrato G, Morandi S, Capucci V (2017) Aspirin and paracetamol removal using a commercial micro-sized TiO2 catalyst in deionized and tap water. Environ Sci Pollut Res 24(14):12646–12654CrossRefGoogle Scholar
  21. Bila DM, Dezotti M (2003) Fármacos no meio ambiente. Química Nova 26(4):523–530CrossRefGoogle Scholar
  22. Blaustein AR, O’Hara RK (1987) Aggregation behavior in Rana cascadae tadpoles: association preferences among wild aggregation and response to non-kin. Anim Behav 35:1549–1555CrossRefGoogle Scholar
  23. Blaustein AR, Wake DB (1990) Declining amphibian populations: a global phenomenon. Trends in Ecology & Evolution 5:203-204Google Scholar
  24. Blenkinsopp A, Bond C, Raynor DK (2012) Medication reviews. Br J Clin Pharmacol 74(4):573–580.  https://doi.org/10.1111/j.1365-2125.2012.04331.x CrossRefGoogle Scholar
  25. Bosch B, Gorla N, Aiassa D (2011) Micronucleus test in post metamorphic Odontophrynus cordobae and Rhinella arenarum (Amphibia: Anura) for environmental monitoring. J Toxicol Environ Health Sci 3(6):155–163Google Scholar
  26. Boxall ABA (2004) The environmental side effects of medication. EMBO Rep 5(12):1110–1116CrossRefGoogle Scholar
  27. Brambilla G, Carrozzino R, Martelli A (2007) Genotoxicity and carcinogenicity studies of benzodiazepines. Pharmacol Res 56:443–458CrossRefGoogle Scholar
  28. Bresler J, Bragg AN (1954) Variations in the rows of labial teeth in tadpoles. Copeia 1954:255–257CrossRefGoogle Scholar
  29. Buron N, Porceddu M, Roussel C, Begriche K, Trak-Smayra V, Gicquel T, Fromenty B, Borgne-Sanchez A (2017) Chronic and low exposure to a pharmaceutical cocktail induces mitochondrial dysfunction in liver and hyperglycemia: differential responses between lean and obese mice. Environ Toxicol 32(4):1375–1389.  https://doi.org/10.1002/tox.22331 CrossRefGoogle Scholar
  30. Burraco P, Duarte LJ, Gomez-Mestre I (2013) Predator-induced physiological responses in tadpoles challenged with herbicide pollution. Current Zoology 59(4):475–484CrossRefGoogle Scholar
  31. Busch W, Schmidt S, Kühne R, Schulze T, Krauss M, Altenburger R (2016) Micropollutants in European rivers: a mode of action survey to support the development of effect-based tools for water monitoring. Environ Toxicol Chem 35(8):1887–1899.  https://doi.org/10.1002/etc.3460 CrossRefGoogle Scholar
  32. Çavas T, Garanko NN, Arkhipchuk VV (2005) Induction of micronuclei and binuclei in blood, gill and liver cells of shes subchronically exposed to cadmium chloride and copper sulphate. Food Chem Toxicol 43:569–574CrossRefGoogle Scholar
  33. Chae JP, Park MS, Hwang YS, Min BH, Kim SH, Lee HS, Park MJ (2015) Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos. Chemosphere 120:52–58.  https://doi.org/10.1016/j.chemosphere.2014.05.063 CrossRefGoogle Scholar
  34. Chai L, Wang H, Zhao H, Dong S (2017) Chronic effects of fluoride exposure on growth, metamorphosis, and skeleton development in Bufo gargarizans larvae. Bull Environ Contam Toxicol 98(4):496–501CrossRefGoogle Scholar
  35. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59(3):309–315CrossRefGoogle Scholar
  36. Comeau F, Surette C, Brun GL, Losier R (2008) The occurrence of acidic drugs and caffeine in sewage effluents and receiving waters from three coastal watersheds in Atlantic Canada. Sci Total Environ 396:132–146CrossRefGoogle Scholar
  37. Conners DE, Rogers ED, Armbrust KL, Kwon JW, Black MC (2009) Growth and development of tadpoles (Xenopus laevis) exposed to selective serotonin reuptake inhibitors, fluoxetine and sertraline. throughout metamorphosis Environ Toxicol Chem 28(12):2671–2676.  https://doi.org/10.1897/08-493.1 CrossRefGoogle Scholar
  38. Connon RE, Gesit J, Wermer I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors (Basel) 12(9):12741–12771CrossRefGoogle Scholar
  39. Cribb AY, Afonso AM, Mostério C (2013) Manual técnico de ranicultura. Embrapa Agroindústria de Alimentos-Livro técnico (INFOTECA-E)Google Scholar
  40. Crott J, Fenech M (2001) Preliminary study of the genotoxic potential of homocysteine in human lymphocytes in vitro. Mutagenesis 16(3):213–217CrossRefGoogle Scholar
  41. Cunha DL, de Araujo FG, Marques M (2017) Psychoactive drugs: occurrence in aquatic environment, analytical methods, and ecotoxicity—a review. Environ Sci Pollut Res Int 24(31):24076–24091.  https://doi.org/10.1007/s11356-017-0170-4 CrossRefGoogle Scholar
  42. Deo EP (2014) Pharmaceuticals in the surface water of the USA: a review. Curr Envir Health Rpt 1:113–122CrossRefGoogle Scholar
  43. Drake DL, Altig R, Grace JB, Wallis SC (2007) Occurrence of oral deformities in larval anurans. Copeia 2:449–458CrossRefGoogle Scholar
  44. Düsman E, Almeida IV, Mariucci RG, Mantovani MS, Vicentini VE (2014) Cytotoxicity and mutagenicity of fluoxetine hydrochloride (Prozac), with or without vitamins A and C, in plant and animal model systems. Genet Mol Res 13(1):578–589.  https://doi.org/10.4238/2014.January.28.3 CrossRefGoogle Scholar
  45. Elersek T, Milavec S, Korošec M, Brezovsek P, Negreira N, Zonja B, de Alda ML, Barceló D, Heath E, Ščančar J, Filipič M (2016) Toxicity of the mixture of selected antineoplastic drugs against aquatic primary producers. Environ Sci Pollut Res Int 23(15):14780–14790.  https://doi.org/10.1007/s11356-015-6005-2 CrossRefGoogle Scholar
  46. Elersek T, Ženko M, Filipič M (2018) Ecotoxicity of disinfectant benzalkonium chloride and its mixture with antineoplastic drug 5-fluorouracil towards alga Pseudokirchneriella subcapitata. PeerJ 6:e4986.  https://doi.org/10.7717/peerj.4986.eCollection.2018.
  47. Escher B, Hermens LM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs and mixture effects. Environ Sci Technol 36(20):4201–4217CrossRefGoogle Scholar
  48. Evans S, Bagnall J, Kasprzyk-Hordern B (2017) Enantiomeric profiling of a chemically diverse mixture of chiral pharmaceuticals in urban water. Environ Pollut 230:368–377.  https://doi.org/10.1016/j.envpol.2017.06.070 CrossRefGoogle Scholar
  49. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26(1):125–132.  https://doi.org/10.1093/mutage/geq052 CrossRefGoogle Scholar
  50. Foster HR, Burton GA, Basu N, Werner EE (2010) Chronic exposure to fluoxetine (Prozac) causes developmental delays in Rana pipiens larvae. Environ Toxicol Chem 29(12):2845–2850.  https://doi.org/10.1002/etc.345 CrossRefGoogle Scholar
  51. Gatson BJ, Goe A, Granone TD, Wellehan JF (2017) Intramuscular epinephrine results in reduced anesthetic recovery time in american alligators (Alligator mississippiensis) undergoing isoflurane anesthesia. J Zoo Wildl Med 48(1):55–61.  https://doi.org/10.1638/2015-0293.1 CrossRefGoogle Scholar
  52. Glos J, Erdmann G, Dausmann KH, Linsenmair KE (2007) A comparative study of predator-induced social aggregation of tadpoles in two anuran species from western Madagascar.— Herpetol J 17:261–268Google Scholar
  53. Gomez-Mestre I, Díaz-Paniagua C (2011) Invasive predatory crayfish do not trigger inducible defences in tadpoles. Proceedings of The Royal Society, Part B 278:3364–3370CrossRefGoogle Scholar
  54. Guedes-Alonso R, Afonso-Olivares C, Montesdeoca-Esponda S, Sosa-Ferreira Z, Santana-Rodriguez JJ (2013) An assessment of the concentrations of pharmaceutical compounds in wastewater treatment plants on the island of Gran Canaria (Spain). Springerplus 2:24CrossRefGoogle Scholar
  55. Hernandez-Divers SJ, Martinez-Jimenez D, Bush S, Latimer KS, Zwart P, Kroeze EJ (2008) Effects of allopurinol on plasma uric acid levels in normouricaemic and hyperuricaemic green iguanas (Iguana iguana). Vet Rec 162(4):112–115CrossRefGoogle Scholar
  56. Howdeshell KL, Hotchkiss AK, Earl-Gray-Jr L (2017) Cumulative effects of antiandrogenic chemical mixtures and their relevance to human health risk assessment. Int J Hyg Environ Health 220:179–188CrossRefGoogle Scholar
  57. Isidori M, Parrella A, Pistillo P, Temussi F (2009) Effects of ranitidine and its photoderivatives in the aquatic environment. Environ Int 35:821–825CrossRefGoogle Scholar
  58. Kacirova I, Grundmann M, Sihan P, Brozmanova HA (2016) Case report of clonazepam dependence. Medicine (Baltimore) 95(9):e-2881CrossRefGoogle Scholar
  59. Kafaei R, Papari F, Seyedabadi M, Sahebi S, Tahmasebi R, Ahmadi M, Sorial GA, Asgari G, Ramavandi B (2018) Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf. Iran Sci Total Environ 627:703–712.  https://doi.org/10.1016/j.scitotenv.2018.01.305 CrossRefGoogle Scholar
  60. Knapp RA, Morgan JAT (2006) Tadpole mouthpart depigmentation as an accurate indicator of chytridiomycosis, an emerging disease of amphibians. Copeia 2:188–197CrossRefGoogle Scholar
  61. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  62. Koumaki E, Mamais D, Noutsopoulos C (2017) Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems. J Hazard Mater 323(Part A):233–241CrossRefGoogle Scholar
  63. Kummerer K (2010) Pharmaceuticals in the environment. Annu Rev Environ Resour 35:57–75CrossRefGoogle Scholar
  64. Küster A, Adler N (2014) Pharmaceuticals in the environment: scientific evidence of risks and its regulation. Philos Trans R Soc Lond Ser B Biol Sci 369(1656):20130587CrossRefGoogle Scholar
  65. Laurila A (2000) Behavioural responses to predator chemical cues and local variation in antipredator performance in Rana temporaria tadpoles. Oikos 88:159–168CrossRefGoogle Scholar
  66. Lips KR (1998) Decline of a tropical montane amphibian fauna. Conservation Biology 12:106–112Google Scholar
  67. Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU (2017) Reduction in activity by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish. J Exp Biol 220(Pt 8):1451–1458.  https://doi.org/10.1242/jeb.146969. CrossRefGoogle Scholar
  68. Luzhna L, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4:131.  https://doi.org/10.3389/fgene.2013.00131.eCollection.2013.
  69. Mahboob S (2014) Investigation on the genotoxicity of mercuric chloride to freshwater Clarias gariepinus. Pakistan Veterinaty 34(1):100–103Google Scholar
  70. Maher JM, Werner EE, Denver RJ (2013) Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc Biol Sci 280(1758):20123075CrossRefGoogle Scholar
  71. Mateuca R, Lombaert N, Aka PV, Decordier I, Kirsch-Volders M (2006) Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie 88:1515–1531CrossRefGoogle Scholar
  72. Matozzo V, Bertin V, Battistara M, Guidolin A, Masiero L, Marisa I, Orsetti A (2016) Does the antibiotic amoxicillin affect haemocyte parameters in non-target aquatic invertebrates? The clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis as model organisms. Mar Environ Res 119:51–58.  https://doi.org/10.1016/j.marenvres.2016.05.017 CrossRefGoogle Scholar
  73. Melvin SD (2016) Oxidative stress, energy storage, and swimming performance of Limnodynastes peronii tadpoles exposed to a sub-lethal pharmaceutical mixture throughout development. Chemosphere 150:790–797.  https://doi.org/10.1016/j.chemosphere.2015.09.034 CrossRefGoogle Scholar
  74. Melvin SD, Cameron MC, Lanctôt CM (2014) Individual and mixture toxicity of pharmaceuticals naproxen, carbamazepine, and sulfamethoxazole to Australian striped marsh frog tadpoles (Limnodynastes peronii). J Toxicol Environ Health A 77(6):337–345.  https://doi.org/10.1080/15287394.2013.865107 CrossRefGoogle Scholar
  75. Melvin SD, Jones OAH, Carroll AR, Leusch FDL (2018) 1H NMR-based metabolomics reveals interactive effects between the carrier solvent methanol and a pharmaceutical mixture in an amphibian developmental bioassay with Limnodynastes peronii. Chemosphere 199:372–381.  https://doi.org/10.1016/j.chemosphere.2018.02.063 CrossRefGoogle Scholar
  76. Mignani S, Huber S, Tomas H, Rodrigues J, Majoral JP (2016) Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discov Today 21(2):239–249CrossRefGoogle Scholar
  77. Moffat JG, Vincent F, Lee JÁ, Eder J, Pronotto M (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 16:531–543CrossRefGoogle Scholar
  78. Montalvão MF, Malafaia G (2017 Oct) Effects of abamectin on bullfrog tadpoles: insights on cytotoxicity. Environ Sci Pollut Res Int 24(29):23411–23416.  https://doi.org/10.1007/s11356-017-0124-x CrossRefGoogle Scholar
  79. Montalvão MF, de Souza JM, Guimarães ATB, de Menezes IPP, Castro ALDS, Rodrigues ASL, Malafaia G (2017) The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Lithobates catesbeianus). Chemosphere 183:491–502.  https://doi.org/10.1016/j.chemosphere.2017.05.080 CrossRefGoogle Scholar
  80. Montalvão MF, da Silva Castro AL, de Lima Rodrigues AS, de Oliveira Mendes B, Malafaia G (2018) Impacts of tannery effluent on development and morphological characters in a neotropical tadpole. Sci Total Environ 610–611:1595–1606.  https://doi.org/10.1016/j.scitotenv.2017.06.134 CrossRefGoogle Scholar
  81. Monteiro JADN, Cunha LAD, Costa MHPD, Reis HSD, Aguiar ACDS, Oliveira-Bahia VRL, Burbano RMR, Rocha CAMD (2018) Mutagenic and histopathological effects of hexavalent chromium in tadpoles of Lithobates catesbeianus (Shaw, 1802) (Anura Ranidae). Ecotoxicol Environ Saf 163:400–407.  https://doi.org/10.1016/j.ecoenv.2018.07.083. [Epub.ahead.of.print]
  82. Nunes CN, Anjos VE, Quinária SP (2018) Determination of diazepam and clonazepam in natural water – a voltammetric study. Electroanalysis 30(1):109–118CrossRefGoogle Scholar
  83. Pamplona JH, Oba ET, Silva TA, Ramos LP, Ramsdorf WA, Cestari MM, Oliveira-Ribeiro CA, Zampronio AR, Silva-de-Assis HC (2011a) Subchronic effects of dipyrone on the fish species Rhamdia quelen. Ecotoxicol Environ Saf 74(3):342–349CrossRefGoogle Scholar
  84. Pamplona JH, Oba ET, Da Silva TA, Ramos LP, Ramsdorf WA, Cestari MM et al (2011b) Subchronic effects of dipyrone on the fish species Rhamdia quelen. Ecotoxicol Environ Saf 74(3):342–349CrossRefGoogle Scholar
  85. Parolini M, Binelli A (2012) Sub-lethal effects induced by a mixture of three non-steroidal anti-inflammatory drugs (NSAIDs) on the freshwater bivalve Dreissena polymorpha. Ecotoxicology 21(2):379–392.  https://doi.org/10.1007/s10646-011-0799-6 CrossRefGoogle Scholar
  86. Parolini M, Binelli A, Provini A (2011) Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicol Environ Saf 74(6):1586–1594CrossRefGoogle Scholar
  87. Parolini M, Binelli A, Provini A (2017) Assessment of the potential cyto–genotoxicity of the nonsteroidal anti-inflammatory drug (NSAID) diclofenac on the zebra mussel (Dreissena polymorpha). Water Air Soil Pollut 217(1–4):589–601Google Scholar
  88. Perreault HA, Semsar K, Godwin J (2003) Fluoxetine treatment decreases territorial aggression in a coral reef fish. Physiol Behav 79(4):719–724CrossRefGoogle Scholar
  89. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27CrossRefGoogle Scholar
  90. Quadra GR, Oliveira de Souza H, Costa RD, Fernandez MA (2016) Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. Environ Sci Pollut Res Int 24(2):1200–1218.  https://doi.org/10.1007/s11356-016-7789-4
  91. Quadra GR, Oliveira de Souza H, Costa RD, Fernandez MA (2017) Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. Environ Sci Pollut Res Int 24(2):1200–1218.  https://doi.org/10.1007/s11356-016-7789-4 CrossRefGoogle Scholar
  92. Rohr JR, Crumrine PW (2005) Effects of an herbicide and an insecticide on pond community structure and processes. Ecol Appl 15(4):1135–1147CrossRefGoogle Scholar
  93. Rowe CL, Kinney OM, Congdon JD (1998) Oral deformities in tadpoles of the bullfrog (Rana catesbeina) caused by conditions in a polluted habitat. Copeia 1998:244–246CrossRefGoogle Scholar
  94. Shaw G (1802) General Zoology or Systematic Natural History. Volume III, Part 1. Amphibia. LondonGoogle Scholar
  95. Sodré FF, Locatelli MAF, Jardim WF (2010) Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water Air Soil Pollut 206(1):57–67CrossRefGoogle Scholar
  96. Sodré FF, Dutra PM, Santos VP (2018) Pharmaceuticals and personal care products as emerging micropollutants in Brazilian surface waters: a preliminary snapshot on environmental contamination and risks. Eclética Química Journal 43:22–34CrossRefGoogle Scholar
  97. Souza JM, Rabelo LM, de Faria DBG, Guimarães ATB, da Silva WAM, Rocha TL, Estrela FN, Chagas TQ, de Oliveira Mendes B, Malafaia G (2018) The intake of water containing a mix of pollutants at environmentally relevant concentrations leads to defensive response deficit in male C57Bl/6J mice. Sci Total Environ 628–629:186–197.  https://doi.org/10.1016/j.scitotenv.2018.02.040 CrossRefGoogle Scholar
  98. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260CrossRefGoogle Scholar
  99. Ternes T, Bonerz M, Schmidt T (2001) Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr 938(1):175–185CrossRefGoogle Scholar
  100. Tran S, Fulcher N, Nowicki M, Desai P, Tsang B, Facciol A, Chow H, Gerlai R (2017) Time-dependent interacting effects of caffeine, diazepam, and ethanol on zebrafish behaviour. Prog Neuropsychopharmacol Biol Psychiatry 75:16–27.  https://doi.org/10.1016/j.pnpbp.2016.12.004 CrossRefGoogle Scholar
  101. Van Buskirk J, Yurewicz KL (1998) Effects of predators on prey growth rate: relative contributions of thinning and reduced activity. Oikos 82:20–28CrossRefGoogle Scholar
  102. Veldhoen N, Skirrow RC, Brown LL, van Aggelen G, Helbing CC (2014) Effects of acute exposure to the non-steroidal anti-inflammatory drug ibuprofen on the developing North American Bullfrog (Rana catesbeiana) tadpole. Environ Sci Technol. 48(17):10439–10447.  https://doi.org/10.1021/es502539g CrossRefGoogle Scholar
  103. Venesky MD, Wasserug RJ, Parris MJ (2010) The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southem leopard frog (Lithobates sphenocephalus). Copeia 3:481–486CrossRefGoogle Scholar
  104. Vulliet E, Cren-Olive C (2011) Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ Pollut 159(10):2929–2934CrossRefGoogle Scholar
  105. Wells KD (1977) The social behavior of anuran amphibians. Anim Behav 25:666–693CrossRefGoogle Scholar
  106. Wyman RL (1990) What’s happening to the amphibians? Conservation Biology 4:350–352Google Scholar
  107. Yasser EN, Shawkat EN, Samir A (2015) Impact of organic contamination on some aquatic organisms. Toxicol Int 22(1):45–53CrossRefGoogle Scholar
  108. Zivna D, Plhalova L, Praskova E, Stepanova S, Siroka Z, Sevcikova M, Blahova J, Bartoskova M, Marsalek P, Skoric M, Svobodova Z (2013) Oxidative stress parameters in fish after subchronic exposure to acetylsalicylic acid. Neuro Endocrinol Lett 34(Suppl 2):116–122Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Diogo Ferreira do Amaral
    • 1
  • Mateus Flores Montalvão
    • 1
  • Bruna de Oliveira Mendes
    • 1
  • Amanda Pereira da Costa Araújo
    • 1
  • Aline Sueli de Lima Rodrigues
    • 1
    • 2
  • Guilherme Malafaia
    • 1
    • 2
    • 3
    Email author
  1. 1.Post-Graduation Program in Conservation of Cerrado Natural Resources – Biological Research LaboratoryGoiano Federal Institute—Urutaí CampusUrutaíBrazil
  2. 2.Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural ResourcesGoiano Federal Institute—Urutaí CampusUrutaíBrazil
  3. 3.Laboratório de Pesquisas BiológicasInstituto Federal Goiano—Campus UrutaíUrutaíBrazil

Personalised recommendations