Advertisement

Kinetic and equilibrium adsorption of two post-harvest fungicides onto copper-exchanged montmorillonite: synergic and antagonistic effects of both fungicides’ presence

  • Martina Gamba
  • Juan M. Lázaro-Martínez
  • Melisa S. Olivelli
  • Florencia Yarza
  • Daniel Vega
  • Gustavo Curutchet
  • Rosa M. Torres Sánchez
Research Article
  • 42 Downloads

Abstract

The simultaneous adsorption of both imazalil (IMZ) and thiabendazole (TBZ) fungicides in a Cu2+-exchanged Mt was studied in this work. Kinetic studies were used to determine the rate law which describes the adsorption of individual fungicides onto the adsorbent. Adsorption isotherm of individual and combined fungicides was done to evaluate synergic or antagonistic effects. The Mt-Cu material considerably improved TBZ and/or IMZ adsorption from aqueous suspensions with respect to raw Mt, leading to removal efficiencies higher than 99% after 10 min of contact time for TBZ and IMZ Ci = 15 and 40 mg/L, respectively, when a solid dosage = 1 g/L was used. The adsorption sites involved were determined by a combination of X-ray diffraction (XRD) determinations and electron paramagnetic resonance (EPR), indicating that fungicides were bonded to Cu2+ cations, while the rate limiting step was the formation of coordination bonds. The adsorption mechanism proposed is that of ligand exchange between water and fungicide molecules in the metal coordination sphere. The single-crystal structure for the IMZ-Cu2+ complex indicated that four molecules were bounded to the copper centers, while two molecules of TBZ are bounded to copper explaining the higher IMZ uptake capacity for the Mt-Cu material.

Graphical abstract

Keywords

Cu2+-exchanged montmorillonite Thiabendazole Imazalil Adsorption Crystal structure determination Copper-imazalil complex 

Notes

Acknowledgments

The authors acknowledge the funding provided by FONARSEC project, Nano FS-008/2010, and ANPCYT (PICT 2016-1723), Univ. de Buenos Aires (UBACyT 2017-2019/22BA), and CONICET (PIP 2014-2016/130). GC, JLM, DV, and RMTS are members of CONICET, and MG, MO, and FY acknowledge the National Council of Scientific and Technical Research – CONICET, Argentina, for their respectively fellowships.

Supplementary material

11356_2018_3638_MOESM1_ESM.cif (508 kb)
ESM 1 (CIF 507 kb)
11356_2018_3638_MOESM2_ESM.docx (2.9 mb)
ESM 2 (DOCX 2942 kb)

References

  1. Abry S, Thibon A, Albela B, Delichère P, Banse F, Bonneviot L (2009) Design of grafted copper complex in mesoporous silica in defined coordination, hydrophobicity and confinement states. New J Chem 33:484CrossRefGoogle Scholar
  2. Akpomie KG, Dawodu FA (2014) Efficient abstraction of nickel (II) and manganese (II) ions from solution onto an alkaline-modified montmorillonite. J Taibah University Sci 8:343–356CrossRefGoogle Scholar
  3. Barahona F, Gjelstad A, Pedersen-Bjergaard S, Rasmussen KE (2010) Hollow fiber-liquid-phase microextraction of fungicides from orange juices. J Chromatography A 1217:1989–1994CrossRefGoogle Scholar
  4. Brtáňová A, Madejová J, Bizovská V, Komadel P (2014) Utilization of near infrared spectroscopy for studying solvation properties of Cu-montmorillonites. Spectrochim Acta A Mol Biomol Spectrosc 123:385–391CrossRefGoogle Scholar
  5. Cheon S, Shin YW, Park KM, Kim J, Kim TH (2011) Imazalil: 1-[2-(2,4-Dichlorophenyl)-2-(Prop-2-Enyloxy)ethyl]-1 H –imidazole. Acta Crystallogr Sect E Struct Reports Online 67:1459–1459CrossRefGoogle Scholar
  6. Cheung CW, Porter LF, McKay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35:605–612CrossRefGoogle Scholar
  7. Darvishi Cheshmeh Soltani R, Rezaee A, Shams Khorramabadi G, Yaghmaeian K (2011) Optimization of lead (II) biosorption in an aqueous solution using chemically modified aerobic digested sludge. Water Sci Technol 63:129–135CrossRefGoogle Scholar
  8. de Oliveira Neto OF, Arenas AY, Fostier AH (2017) Sorption of thiabendazole in sub-tropical Brazilian soils. Environ Sci Pollut Res 24:16503–16512.  https://doi.org/10.1007/s11356-017-9226-8 CrossRefGoogle Scholar
  9. Donoso P, Magon J, Lima JF, Rangel O, Benavente E, Moreno M, Gonzalez G (2013) Electron paramagnetic resonance study of copper-ethylenediamine complex ion intercalated in bentonite electron paramagnetic resonance study of copper-ethylenediamine complex ion intercalated in bentonite. J Phys Chem C 117:24042–24055CrossRefGoogle Scholar
  10. Fan H, Zhou L, Jiang X, Huang Q, Lang W (2014) Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Appl Clay Sci 95:150–158CrossRefGoogle Scholar
  11. Fatimah I, Huda T (2013) Preparation of cetyltrimethylammonium intercalated Indonesian montmorillonite for adsorption of toluene. Appl Clay Sci 74:115–120CrossRefGoogle Scholar
  12. Fruhstorfer P, Schneider RJ, Weil L, Niessner R (1993) Factors influencing the adsorption of atrazine on montmorillonitic and kaolinitic clays. Sci Total Environ 138:317–328CrossRefGoogle Scholar
  13. Gamba M, Flores FM, Madejova J, Torres Sánchez RM (2015) Comparison of imazalil removal onto montmorillonite and nanomontmorillonite and adsorption surface sites involved: an approach for agricultural wastewater treatment. Ind Eng Chem Res 54:1529–1538CrossRefGoogle Scholar
  14. Gamba M, Kovář P, Pospíšil M, Torres Sánchez RM (2017a) Insight into thiabendazole interaction with montmorillonite and organically modified montmorillonites. Appl Clay Sci 137:59–68CrossRefGoogle Scholar
  15. Gamba M, Olivelli M, Lázaro-Martínez JM, Gaddi G, Curutchet G, Torres Sánchez RM (2017b) Thiabendazole adsorption on montmorillonite, octadecyltrimethylammonium- and Acremonium sp.-loaded products and their copper complexes. Chem Eng J 320:11–21CrossRefGoogle Scholar
  16. Grevy JM, Tellez F, Bernés S, Nöth H, Contreras R, Barba-Behrens N (2002) Coordination compounds of thiabendazole with main group and transition metal ions. Inorg Chim Acta 339:532–542CrossRefGoogle Scholar
  17. Gürses A, Karaca S, Doğar Ç, Bayrak R, Açikyildiz M, Yalçin M (2004) Determination of adsorptive properties of clay/water system methylene blue sorption. J Colloid Interface Sci 269:310–314CrossRefGoogle Scholar
  18. He HP, Guo JG, Xie XD, Peng JL (2001) Location and migration of cations in Cu2+-adsorbed montmorillonite. Environ Int 26:347–352CrossRefGoogle Scholar
  19. Heller-Kallai L, Mosser C (1995) Migration of Cu ions in Cu montmorillonite heated with and without alkali halides. Clay Clay Miner 43:738–743CrossRefGoogle Scholar
  20. Holešová S, Kulhánková L, Martynková GS, Kukutschová J, Čapková P (2009) An effective route to montmorillonite intercalation with imidazole complexes: experiment and theory. J Mol Struct 923:85–89CrossRefGoogle Scholar
  21. Jiménez M, Ignacio Maldonado M, Rodríguez EM, Hernández-Ramírez A, Saggioro E, Carra I, Sanchez Perez JA (2015) Supported TiO2 solar photocatalysis at semi-pilot scale: degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. J Chem Technol Biotechnol 90:149–157CrossRefGoogle Scholar
  22. Jiménez-Tototzintle M, Oller I, Hernández-Ramírez A, Malato S, Maldonado MI (2015) Remediation of agro-food industry effluents by biotreatment combined with supported TiO2/H2O2 solar photocatalysis. Chem Eng J 273:205–213.  https://doi.org/10.1016/j.cej.2015.03.060 CrossRefGoogle Scholar
  23. Jing P, Hou M, Zhao P, Tang X, Wan H (2013) Adsorption of 2-mercaptobenzothiazole from aqueous solution by organo-bentonite. J Environ Sci 25:1139–1144CrossRefGoogle Scholar
  24. Joseph-Ezra H, Nasser A, Mingelgrin U (2014) Surface interactions of pyrene and phenanthrene on Cu-montmorillonite. Appl Clay Sci 95:348–356CrossRefGoogle Scholar
  25. Kaya A, Ören AH (2005) Adsorption of zinc from aqueous solutions to bentonite. J Hazard Mater 125:183–189CrossRefGoogle Scholar
  26. Lázaro-Martínez JM, Monti GA, Chattah AK (2013) Insights into the coordination sphere of copper ion in polymers containing carboxylic acid and azole groups. Polymer 54:5214–5221CrossRefGoogle Scholar
  27. Lombardi B, Baschini M, Torres Sánchez RM (2003) Optimization of parameters and adsorption mechanism of thiabendazole fungicide by a montmorillonite of North Patagonia, Argentina. Appl Clay Sci 24:43–50CrossRefGoogle Scholar
  28. Lombardi BM, Torres Sánchez RM, Eloy P, Genet M (2006) Interaction of thiabendazole and benzimidazole with montmorillonite. Appl Clay Sci 33:59–65CrossRefGoogle Scholar
  29. Magnoli AP, Tallone L, Rosa CA, Dalcero AM, Chiacchiera SM, Torres Sanchez RM (2008) Commercial bentonites as detoxifier of broiler feed contaminated with aflatoxin. Appl Clay Sci 40:63–71CrossRefGoogle Scholar
  30. Malamis S, Katsou E (2013) A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater 252:428–461CrossRefGoogle Scholar
  31. Mazloomi F, Jalali M (2017) Adsorption of ammonium from simulated wastewater by montmorillonite nanoclay and natural vermiculite: experimental study and simulation. Environ Monit Assess 189:415.  https://doi.org/10.1007/s10661-017-6080-6 CrossRefGoogle Scholar
  32. Ng JCY, Cheung WH, McKay G (2003) Equilibrium studies for the sorption of lead from effluents using chitosan. Chemosphere 52:1021–1030CrossRefGoogle Scholar
  33. Özacar M, Şengil İA (2005) A kinetic study of metal complex dye sorption onto pine sawdust. Process Biochem 40:565–572CrossRefGoogle Scholar
  34. Park Y, Ayoko GA, Kurdi R, Horváth E, Kristóf J, Frost RL (2013) Adsorption of phenolic compounds by organoclays: implications for the removal of organic pollutants from aqueous media. J Colloid Interface Sci 406:196–208CrossRefGoogle Scholar
  35. Parolo ME, Savini MC, Vallés JM, Baschini MT, Avena MJ (2008) Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci 40:179–186CrossRefGoogle Scholar
  36. Pérez-Marín AB, Zapata VM, Ortuno JF, Aguilar M, Sáez J, Lloréns M (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater 139:122–131CrossRefGoogle Scholar
  37. Roberts-Hutson C (ed) (1998) Metabolic pathways of agrochemicals. Insecticides and fungicides. The Royal Society of Chemistry, CambridgeGoogle Scholar
  38. Roca Jalil ME, Vieira RS, Azevedo D, Baschini M, Sapag K (2013) Improvement in the adsorption of thiabendazole by using aluminum pillared clays. Appl Clay Sci 71:55–63CrossRefGoogle Scholar
  39. Roca Jalil ME, Baschini M, Rodríguez-Castellón E, Infantes-Molina A, Sapag K (2014) Effect of the Al/clay ratio on the thiabendazole removal by aluminum pillared clays. Appl Clay Sci 87:245–253CrossRefGoogle Scholar
  40. Rytwo G, Nir S, Margulies L (1995) Interactions of monovalent organic cations with montmorillonite: adsorption studies and model calculations. Soil Sci Soc Am J 59:554–564CrossRefGoogle Scholar
  41. Saha A, Tp AS, Gajbhiye VT, Gupta S, Kumar R (2013) Removal of mixed pesticides from aqueous solutions using organoclays: evaluation of equilibrium and kinetic model. Bull Environ Contam Toxicol 91:111–116CrossRefGoogle Scholar
  42. Sen Gupta S, Bhattacharyya KG (2006) Adsorption of Ni(II) on clays. J Colloid Interface Sci 295:21–32CrossRefGoogle Scholar
  43. Sen Gupta S, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interf Sci 162:39–58CrossRefGoogle Scholar
  44. Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr Sect A 46:467–473CrossRefGoogle Scholar
  45. Sheldrick GM (2007) A short history of SHELX. Acta Crystallogr Sect A Found Crystallogr 64:112–122CrossRefGoogle Scholar
  46. Tway PC, Love JC (1982) Effects of excited-state prototropic equilibria on the fluorescence energies of benzimidazole and thiabendazole homologues. J Phys Chem 86:5227–5230CrossRefGoogle Scholar
  47. Wang G, Su X, Hua Y, Ma S, Wang J, Xue X, Komarneni S (2016) Kinetics and thermodynamic analysis of the adsorption of hydroxy-Al cations by montmorillonite. Appl Clay Sci 129:79–87CrossRefGoogle Scholar
  48. Wisniewski MZ, Glowiak T, Opolski A, Wietrzyk J (2001) Synthesis, characterization and antiproliferative activity of the Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) complexes of 2-(4-thiazolyl)benzimidazole (thiabendazole). Metal-Based Drugs 8:189–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Martina Gamba
    • 1
  • Juan M. Lázaro-Martínez
    • 2
  • Melisa S. Olivelli
    • 3
  • Florencia Yarza
    • 1
  • Daniel Vega
    • 4
  • Gustavo Curutchet
    • 3
  • Rosa M. Torres Sánchez
    • 1
  1. 1.CETMIC-CONICET-CCT La Plata-CICLa PlataArgentina
  2. 2.IQUIMEFA -CONICET, Facultad de Farmacia y Bioquímica, Departamento de Química OrgánicaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Escuela de Ciencia y Tecnología e Instituto de Investigación e Ingeniería Ambiental, CONICETUniversidad Nacional de San MartínBuenos AiresArgentina
  4. 4.Departamento de Física de la Materia CondensadaComisión Nacional de Energía AtómicaBuenos AiresArgentina

Personalised recommendations