Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 1, pp 483–491 | Cite as

Evaluation of mercury phytoavailability in Oxisols

  • Francielle R. D. Lima
  • Mateus M. Engelhardt
  • Isabela C. F. Vasques
  • Gabriel C. Martins
  • Geraldo S. Cândido
  • Polyana Pereira
  • Rayner H. C. L. Reis
  • Aline O. Silva
  • Luiz Roberto G. Guilherme
  • João José MarquesEmail author
Research Article
  • 56 Downloads

Abstract

Mercury is a metal which is potentially toxic for the environment. Many factors control its retention in the soil, such as cation exchange capacity, pH, clay content, organic matter, and redox potential. It is important to know the phytotoxic effects of soil Hg to prevent environmental contamination and its entry into the food chain. Several analytical methods are used to measure metal phytoavailability in soils, but none has been reported for Hg in Oxisols, the most common soil class in Brazil and a very important soil class throughout the tropics. The aim of this study was to select the chemical extractor that best correlated the Hg levels in plants and the Oxisols. The soils used were classified as Dystrophic Red-Yellow Oxisol (LVAd) and Dystroferric Red Oxisol (LVdf), which were collected in the 0–0.2-m soil layer. The species selected for cultivation were a monocotyledon, oat (Avena sativa L. cv. São Carlos) and a eudicotyledon, common bean (Phaseolus vulgaris L. cv. Madrepérola). Each test plot was composed of a 500 cm3 pot filled with soil samples contaminated with HgCl2. Treatments were arranged in a completely randomized design, with four replications. The experiment was conducted for 30 days. Mercury contents were separately extracted with the following extractors: USEPA 3051A, Mehlich-1, Mehlich-3, DTPA, and water. Mercury was determined by hydride generation atomic absorption spectroscopy. The extracted contents were correlated with the contents in the tissues of the plants’ aerial part by the Pearson correlation. Although it is not considered a standard procedure to evaluate metal phytoavailable contents, the method that presented the best correlations between soil Hg and plant Hg was USEPA 3051A (r = 0.75*). As expected, the worst correlation was with water (r = 0.57* for common bean and r = 0,05ns for oat).

Keywords

Contamination Mercuric chloride Tropical soils Chemical extractor 

Notes

Funding information

Authors would like to thank the financial support from the National Council of Technology and Scientific Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and the Foundation for Research Support of the Minas Gerais State (FAPEMIG).

References

  1. Abreu CA, Abreu MF, Andrade JC (1998) Distribuição de chumbo no perfil de solo avaliada pelas soluções de DTPA e Mehlich-3. Bragantia 57:185–192 (in Portuguese) CrossRefGoogle Scholar
  2. Abreu CA, Abreu MF, Berton RS (2002) Análise química de solo para metais pesados. In: Alvarez VVCH, Schaefer CEGR, Barros NF, Mello JWV, Costa LM (eds) Tópicos em Ciência do Solo, Vol 2. SBCS, Viçosa, pp 645–692 (in Portuguese) Google Scholar
  3. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioaccessibility and the risk of metals. New York Springs, New YorkCrossRefGoogle Scholar
  4. Alvares VH, Ribeiro AC (1999) Calagem. In: Ribeiro AC, Guimarães PTG, Alvarez VH (eds) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Comissão de Fertilidade do Solo do Estado de Minas Gerais, Viçosa, pp 43–60 (in Portuguese) Google Scholar
  5. American Public Health Association – APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DCGoogle Scholar
  6. Bank MS (2012) Mercury in the environment: pattern and process. University of California Press, CaliforniaCrossRefGoogle Scholar
  7. Bigham G, Liang L, Balouet JC, Chalot M (2015) Phytoscreening-based assessment of mercury in soil. Environ Sci Pollut Res 22(23):19285–19291CrossRefGoogle Scholar
  8. Camargos AO, Moniz AC, Jorge JA, Valadares JMAS (2009) Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas (Boletim Técnico, 106). Instituto Agronômico, Campinas. Available online at http://www.iac.sp.gov.br/produtoseservicos/analisedosolo/docs/Boletim_Tecnico_106_rev_atual_2009.pdf. Accessed 31 Oct 2018 (in Portuguese)
  9. Carvalho GS (2007) Efeito de resíduos siderúrgicos no cultivo de arroz irrigado por inundação: comparação de extratores e disponibilidade de elementos-traço. Dissertation, Federal University of Lavras (in Portuguese)Google Scholar
  10. Conselho Estadual de Política Ambiental – COPAM (2011) Deliberação Normativa COPAM n° 166, de 29 de junho de 2011. Diário do Executivo do Estado de Minas Gerais, 27/07/2011. pp 18–19, Belo Horizonte. Available online at http://www.siam.mg.gov.br/sla/download.pdf?idNorma=18414. Accessed 31 Oct 2018 (in Portuguese)
  11. Ding X, Wang R, Li Y, Gan Y, Liu S, Dai J (2017) Insights into the mercury (II) adsorption and binding mechanism onto several typical soils in China. Environ Sci Pollut Res 24(30):23607–23619CrossRefGoogle Scholar
  12. During A, Rinklebe J, Bohme F, Wennrich R, Stark HJ, Mothes S, Laing GD, Schulz E, Neue HU (2009) Mercury volatilization from three floodplain soils at the Central Elbe River, Germany. Soil Sediment Contam 18:429–444CrossRefGoogle Scholar
  13. Eisler R (2006) Mercury hazards to living organisms. CRC Press, New YorkCrossRefGoogle Scholar
  14. Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA (1997) Manual de métodos de análises de solo. 2nd edn. Centro Nacional de Pesquisa de Solos, Rio de Janeiro. Available online at http://www.agencia.cnptia.embrapa.br/Repositorio/Manual+de+Metodos_000fzvhotqk02wx5ok0q43a0ram31wtr.pdf. Accessed 31 Oct 2018 (in Portuguese)
  15. Frossard A, Hartmann M, Frey B (2017) Tolerance of the forest soil microbiome to increasing mercury concentrations. Soil Biol Biochem 105:162–176CrossRefGoogle Scholar
  16. Frossard A, Donhauser J, Mestrot A, Gygax S, Bååth E, Frey B (2018) Long-and short-term effects of mercury pollution on the soil microbiome. Soil Biol Biochem 120:191–199CrossRefGoogle Scholar
  17. González-Fernández B, Menéndez-Casares E, Meléndez-Asensio M, Fernández-Menéndez S, Ramos-Muñiz F, Cruz-Hernández P, González-Quirós A (2014) Sources of mercury in groundwater and soils of west Gijón (Asturias, NW Spain). Sci Total Environ 481:217–231CrossRefGoogle Scholar
  18. Guilherme LRG, Marques JJ, Pierangeli MAP, Zuliani DQ, Campos ML, Marchi G (2005) Elementostraço em solos e sistemas aquáticos. In: Torrado-Vidal P, Alleoni LRF, Cooper M, Silva AP (eds) Tópicos em ciência do solo, 4rd edn, vol 4. SBCS, Viçosa, pp. 345–390.Google Scholar
  19. Hibbert DB (1999) Method validation of modern analytical techniques. Accred Qual Assur 4:352–356CrossRefGoogle Scholar
  20. Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. J Geochem Explor 80(1):95–104CrossRefGoogle Scholar
  21. International Organizations for Standardization – (ISO) (2012) Soil quality – determination of the effects of pollutants on soil flora – part 2: effects of contaminated soil on the emergence and early growth of higher plants. ISO 11269-2, ISO, GenevaGoogle Scholar
  22. Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. CRC Press, New YorkCrossRefGoogle Scholar
  23. Lacerda LD, de Souza M, Ribeiro MG (2004) The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environ Pollut 129(2):247–255CrossRefGoogle Scholar
  24. Li Y, Zhao J, Guo J, Liu M, Xu Q, Li H, Li Y, Zheng L, Zhang Z, Gao Y (2017) Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere 182:293–300CrossRefGoogle Scholar
  25. Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  26. Liu J, Dai J, Wang R, Li F, Du X, Wang W (2010) Adsorption/desorption and fate of mercury (II) by typical black soil and red soil in China. Soil Sediment Contam 19(5):587–601CrossRefGoogle Scholar
  27. Liu G, Cai Y, O'Driscoll N (2012) Environmental chemistry and toxicology of mercury. John Wiley & Sons, New YorkGoogle Scholar
  28. Malavolta E (1981) Manual de química agrícola: adubos e adubação. Agronômica, São Paulo (in Portuguese) Google Scholar
  29. Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic Pres, LondonGoogle Scholar
  30. Mattiazzo ME, Berton RS, Cruz MCP (2001) Disponibilidade e avaliação de metais pesados potencialmente tóxicos. In: Ferreira ME (ed) Micronutrientes e elementos tóxicos na agricultura. CNPq/Fapesp/Potafos, Jaboticabal (in Portuguese) Google Scholar
  31. McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  32. Mehlich A (1953) Determination of P, Ca, Mg, K, Na, and NH4 (1953) North Carolina Soil Test Division, Raleigh, North CarolinaGoogle Scholar
  33. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416CrossRefGoogle Scholar
  34. Melendez-Perez JJ, Fostier AH, Carvalho JA, Windmoller CC, Santos JC, Carpi A (2014) Soil and biomass mercury emissions during a prescribed fire in the Amazonian rain forest. Atmos Environ 96:415–422CrossRefGoogle Scholar
  35. Melo WJ (2012) Mercury sorption and desorption by tropical soils. In: Selim HM (ed) Competitive sorption and transport of heavy metals in soils and geological media. CRC Press, Boca Raton, pp 147–214CrossRefGoogle Scholar
  36. Moreno FN, Anderson CW, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005) Induced plant uptake and transport of mercury in the presence of sulphur containing ligands and humic acid. New Phytol 166:445–454CrossRefGoogle Scholar
  37. Nascimento RS, Skorupa AL, Passos LP, Marques JJ (2014) Extração e fitodisponibilidade de zinco e chumbo em latossolo tratado com resíduos de siderurgia. Rev Bras Ciênc Agrárias 9:322–329 (in Portuguese) Google Scholar
  38. Pannu R, Siciliano SD, O’Driscoll NJ (2014) Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils. Environ Pollut 193:138–146CrossRefGoogle Scholar
  39. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422CrossRefGoogle Scholar
  40. Penha JG, Carvalho GS, Abreu LB, de Ribeiro BT, Costa ETS, Marques JJ (2017) Procedimentos para quantificação de elementos-traço por espectrofotometria de absorção atômica em matrizes de interesse ambiental, 1st edn. Boletim Técnico, UFLA, Lavras (in Portuguese)Google Scholar
  41. Pires AMM, Mattiazzo ME, Berton RS (2004) Ácidos orgânicos como extratores de metais pesados fitodisponíveis em solos tratados com lodo de esgoto. Pesq Agrop Brasileira 39:671–676 (in Portuguese) CrossRefGoogle Scholar
  42. Plawiak RAB, de Figueiredo BR, Licht OAB (2007) Ocorrência de mercúrio em rochas, solo e sedimento fluvial na bacia do rio Iguaçu, Estado do Paraná, Brasil. Geociências 25(4):437–447 (in Portuguese)Google Scholar
  43. Raij BV, Bataglia OC (1991) Análise de laboratório. In: Oliveira AJ, Garrido WE, Araujo JD, Lourenço S (eds) Métodos de pesquisa em fertilidade do solo. Embrapa-SEA, Brasília, pp.81–101 (in Portuguese) Google Scholar
  44. Raij BV, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas (in Portuguese) Google Scholar
  45. Ravichandran M (2004) Interactions between mercury and dissolved organic matter: a review. Chemosphere 55:319–351CrossRefGoogle Scholar
  46. Reis AT, Lopes CB, Davidson CM, Duarte AC, Pereira E (2014) Extraction of mercury water-soluble fraction from soils: an optimization study. Geoderma 213:255–260Google Scholar
  47. Rogers RD, Mc Farlane JC (1979) Factors influencing the volatilization of mercury from soil. J Environ Qual 8:255–260CrossRefGoogle Scholar
  48. Rundgren S et al (1992) Mercury in soil: distribution, speciation and biological effects. Nordic Council of Ministers, CopenhagenGoogle Scholar
  49. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resourc 34:43Google Scholar
  50. Soares LC, Linhares LA, Egreja Filho FB, Windmöller CC, Yoshida MI (2015) Mercúrio em solos da região sudeste do Brasil sem influência antropogênica e sua correlação com as características químicas e físicas. Rev Bras Ciênc Solo 39:903–914 (in Portuguese) Google Scholar
  51. Teixeira RA, Fernandes AR, Ferreira JR, Vasconcelos SS, Braz MAS (2018) Contamination and soil biological properties in the Serra Pelada mine - Amazonia, Brazil. Revista Brasileira de Ciência do Solo 42:e0160354CrossRefGoogle Scholar
  52. Tinôco AAP, Azevedo ICAD, Marques EAG, Mounteer AH, Martins CDP, Nascentes R, Reis EF, Natalino R (2010) Avaliação de contaminação por mercúrio em Descoberto, MG. Engenharia Sanitária e Ambiental 15(4):305–314 (in Portuguese)CrossRefGoogle Scholar
  53. U.S. Environmental Protection Agency-USEPA (1998) Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils; test methods for evaluating solid waste, physical/chemical methods. USEPA, WashingtonGoogle Scholar
  54. Wang D, He L, Shi X, Wei S, Feng X (2006) Release flux of mercury from different environmental surfaces in Chongqing, China. Chemosphere 64:1845–1854CrossRefGoogle Scholar
  55. Windmöller CC, Durão WA, Oliveira A, Valle CM (2015) The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle. Ecotoxicol Environ Saf 112:201–211CrossRefGoogle Scholar
  56. Yin Y, Allen HE, Li Y, Huang CP, Sanders PF (1996) Adsorption of mercury (II) by soil: effects of pH, chloride and organic matter. J Environ Qual 25:837–844CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Francielle R. D. Lima
    • 1
  • Mateus M. Engelhardt
    • 1
  • Isabela C. F. Vasques
    • 1
  • Gabriel C. Martins
    • 2
  • Geraldo S. Cândido
    • 1
  • Polyana Pereira
    • 1
  • Rayner H. C. L. Reis
    • 1
  • Aline O. Silva
    • 1
  • Luiz Roberto G. Guilherme
    • 1
  • João José Marques
    • 1
    Email author
  1. 1.Soil Science DepartmentUniversidade Federal de LavrasLavrasBrazil
  2. 2.Vale Institute of TechnologyBelémBrazil

Personalised recommendations